-
公开(公告)号:CN108695512A
公开(公告)日:2018-10-23
申请号:CN201810613768.4
申请日:2018-06-14
Applicant: 东北大学秦皇岛分校
IPC: H01M4/52 , H01M10/0525
CPC classification number: H01M4/52 , H01M10/0525
Abstract: 本发明属于能源储能材料领域,涉及一种酸洗铁红作为负极材料的用途。所述酸洗铁红用作负极材料,或者所述酸铁铁红经改性后用作负极材料。本发明的方法以酸洗铁红为原料制备Fe2O3负极材料,降低了锂离子电池的生产成本,同时延伸酸洗铁红的应用链,提高酸洗铁红的资源利用率,减少环境污染。尤其是通过本发明所述改性的方法合成的改性的酸洗铁红用作负极材料具有优异的电化学性能,能够缓解目前的能源危机,为规模化生产带来巨大的经济效益和环保社会效益。
-
公开(公告)号:CN108695498A
公开(公告)日:2018-10-23
申请号:CN201810465818.9
申请日:2018-05-16
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525 , H01M10/054
CPC classification number: H01M4/362 , H01M4/387 , H01M4/62 , H01M4/625 , H01M4/628 , H01M10/0525 , H01M10/054
Abstract: 本发明公开了一种多孔碳内嵌锡基合金的电池负极材料及其制备方法,该复合材料由三维网状多孔碳包覆的纳米级锡基合金均匀镶嵌在三维网状碳结构上构成,其制备过程包括:采用NaCl作为模板,将其与碳源、锡源以及其它金属盐溶解,混合均匀,随后冷冻干燥以保持NaCl立方体结构,研磨后在管式炉中惰性或还原性气氛围中一定温度下进行热处理,洗涤除去NaCl模板,烘干后得到三维多孔网状碳内嵌锡基合金的复合材料。制备出的材料用于锂离子电池和钠离子电池负极,具有容量高,循环性能好且倍率性能优异等特点。而且制备工艺简单,对环境友好,性能可控,具有普适性和可放大性。
-
公开(公告)号:CN108550840A
公开(公告)日:2018-09-18
申请号:CN201810465819.3
申请日:2018-05-16
Applicant: 东北大学秦皇岛分校
Abstract: 三维网状碳内嵌锑基合金钾离子电池负极材料,包括三维网状结构的薄碳层和锑基合金颗粒,该锑基合金颗粒均匀内嵌在薄碳层之中;该材料的制备方法为:1)将NaCl、形成锑基合金的离子化合物及碳源溶于水中,搅拌3-12h制成混合溶液;2)将混合溶液冷冻、干燥去除水分以保持NaCl的立方结构;3)将上述物放入坩埚,在还原氛围下热处理,使碳源碳化为碳单质,金属离子被还原成金属单质,金属单质聚集形成合金;4)用去离子水洗涤除去NaCl,再烘干得产物,该材料容量高,循环性能好,倍率性能优良,具有稳定的充放电平台,解决了金属锑负极材料存在的体积膨胀率大,循环和倍率性能不佳的问题。
-
公开(公告)号:CN107706402A
公开(公告)日:2018-02-16
申请号:CN201711138248.4
申请日:2017-11-16
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36
Abstract: 本发明提供了一种金属元素共掺杂的磷酸锰锂/碳复合正极材料及其制备方法。所述复合正极材料由磷酸锰锂和位于所述磷酸锰锂内部的碳层构成,其中所述磷酸锰锂中的锂、锰位被金属元素共掺杂,所述金属元素为非稀土金属元素。所述复合正极材料的制备方法包括:1)制备第一碳层包覆的锂位掺杂磷酸锂;2)将步骤1)制备的第一碳层包覆的锂位掺杂磷酸锂制备成金属元素共掺杂的磷酸锰锂/碳复合正极材料,第一碳层位于金属元素共掺杂的磷酸锰锂/碳复合正极材料的内部。本发明提供的正极材料电化学性能好,且粒径小,颗粒大小均匀,比表面积大,结晶性高;本发明的方法绿色环保、过程易控、成本低。
-
公开(公告)号:CN107482215A
公开(公告)日:2017-12-15
申请号:CN201710650719.3
申请日:2017-08-02
Applicant: 东北大学秦皇岛分校
Abstract: 本发明涉及一种三维多孔磷酸锰锂、其制备方法及用途,属于新能源材料制备技术领域。本发明的方法为:以饱和盐溶液为模板,利用冷冻干燥法制备磷酸锰锂。更具体的方法包括:1)向饱和盐溶液中加入锂源、磷酸铵盐和/或磷酸、锰源及可选的碳源;2)采用得到的混合溶液进行冷冻干燥;(3)对得到的粉状固体在保护性气氛下进行热处理、清洗,得到磷酸锰锂。本发明的方法新颖,为磷酸锰锂的制备提供了新思路,相比于已有制备磷酸锰锂正极材料的方法,具有工艺简单、绿色环保,原料廉价等优点,且得到的磷酸锰锂产品具有三维多孔结构,比表面积大,以其作为正极材料应用于电池中,能够提高电子电导率,提升正极材料的电化学性能。
-
公开(公告)号:CN115246638A
公开(公告)日:2022-10-28
申请号:CN202211008197.4
申请日:2022-08-22
Applicant: 东北大学秦皇岛分校
IPC: C01B32/15 , H01M4/587 , H01M10/054 , B82Y30/00 , B82Y40/00
Abstract: 本发明涉及一种内表面褶皱的中空介孔碳球的制备方法及应用,属于纳米材料和新能源材料领域。本发明采用树枝状纤维形纳米SiO2(DFNS)作为牺牲模板,经聚乙烯吡咯烷酮(PVP)进行改性后,再以酚醛树脂进行包覆,同时添加硅酸四乙酯(TEOS)引入介孔,退火后经氢氟酸(HF)刻蚀除去牺牲模板即可得到内表面褶皱的中空介孔碳球(IW‑MHCS)。本发明的内表面褶皱的中空介孔碳球(IW‑MHCS)用于钾离子电池负极材料时具有较高可逆比容量,以及优异的循环稳定性。外部光滑内部褶皱的巧妙设计避免电解液与碳材料大面积接触而发生过度的副反应,提高了活性材料的利用率。此外,以内表面褶皱的中空介孔碳球作为基体在金属负载以及掺杂改性等方面也有良好的应用前景,因此具有一定的研究价值。
-
公开(公告)号:CN110280255B
公开(公告)日:2022-08-30
申请号:CN201910670641.0
申请日:2019-07-24
Applicant: 东北大学秦皇岛分校
Abstract: 一种纳米高熵合金电催化剂及其制备方法,属于新材料制备技术领域;该材料是由三维多孔碳基底以及负载在三维多孔碳基底上的FeCoNiCrCu高熵合金纳米颗粒所组成;为FeNi合金结构单斜晶系,空间群Pm6;Fe,Co,Ni,Cr,Cu的摩尔比为1:1:1:1:1;制备方法:1)将模板剂‑氯化钠、碳源、尿素,用去离子水溶解,加入掺杂源,磁力搅拌且完全冻实后,进行真空干燥;2)热处理后冷却至室温,制得粉末;3)将粉末洗涤、过滤和烘干,制得纳米高熵合金电催化剂;4)将纳米高熵合金电催化剂制作成工作电极,并进行电化学性能测试;本发明的纳米高熵合金纳米颗粒的直径为10~100nm,高熵合金电催化剂催化氧气析出反应的起始电位为1.50~1.63V,电流密度为10mA cm‑2时的过电位为360~460mV,Tafel斜率为70~120mV dec‑1。
-
公开(公告)号:CN113621988B
公开(公告)日:2022-07-08
申请号:CN202110918540.8
申请日:2021-08-11
Applicant: 东北大学秦皇岛分校
IPC: C25B11/052 , C25B11/077 , C25B1/04
Abstract: 一种高效氧析出高熵非晶氧化物纳米催化剂及其制备方法和应用,属于催化剂技术领域,本发明方法结合温和的低温液相还原方法拓展非平衡合成策略,利用过量的硼氢化钠溶于多元醇构建一个极端的还原性环境,将多达十种的金属盐前体快速还原为高熵非晶氧化物纳米颗粒,为纳米高熵氧化物合成领域提供了一种新的制备工艺。采用本发明方法制备出的高熵非晶氧化物有高熵的鸡尾酒效应以及无定型的结构,改善了氧化物表面与氧中间体之间的相互作用,并且提供大量的活性位点,大大提高了催化活性。
-
公开(公告)号:CN112909235B
公开(公告)日:2022-02-01
申请号:CN201911217338.1
申请日:2019-12-03
Applicant: 东北大学秦皇岛分校
IPC: H01M4/485 , H01M10/0525
Abstract: 本发明涉及能源技术领域,且公开了一种作为电池负极材料的双核钼原子簇化合物及其制备方法,该双核钼原子簇化合物的制备过程包括:首先将钼酸铵与表面活性剂搅拌混合均匀,之后加热并以一定速度滴加硫脲,反应一定时间,得到双核钼原子簇化合物。最后将产物在一定温度下进行烧结,实现原位碳包覆。制备出的材料用于锂离子电池负极,相比于硫化物,该双核钼原子簇化合物具有容量更高,循环性能更好且倍率性能更优异等特点。而且制备工艺简单,性能可控,具有普适性和可放大性。
-
公开(公告)号:CN110697717B
公开(公告)日:2021-09-21
申请号:CN201910862744.7
申请日:2019-09-12
Applicant: 东北大学秦皇岛分校
IPC: C01B32/914 , H01M4/587 , H01M10/054 , H01M4/02
Abstract: 本发明涉及一种生物遗态结构Sb/C电池负极材料及其制备方法,通过对分心木进行酸液浸泡,得到保留了原材料结构的生物遗态碳,再通过对生物遗态碳复合方法制备出Sb/C复合材料,本发明具有以下有益效果:1、与碳复合提高了Sb的电子导电性;2、较大的孔道将会为K+的移动提供更为快速的扩散通道,而不同孔道之间所存在的胞状薄壁结构则可缩短K+在Sb/C复合材料内的传输距离,从而提高其离子导电性;3、众多的微小孔道也可让材料的比表面积得到提高,随着其比表面积的提高,其电池的比容量也会随之增加;4、通过KOH活化亦可控调节生物遗态碳中的孔道结构,从而可以进一步研究不同结构与性能之间存在的关系。
-
-
-
-
-
-
-
-
-