-
公开(公告)号:CN119478751A
公开(公告)日:2025-02-18
申请号:CN202510062002.1
申请日:2025-01-15
IPC: G06V20/30 , G06V40/70 , G06V40/10 , G06V40/16 , G06V10/44 , G06V10/74 , G06V10/762 , G06V10/774 , G06V10/80 , G06F16/583 , G06N3/0455 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于渐进式多源特征融合与对齐的人像聚档方法及装置,涉及公共视频智能分析领域,包括:构建人像聚档模型,在人像聚档模型中,对人脸图像、人脸模拟素描画像、人体图像、人体模拟素描画像的特征进行渐进融合,并通过伪标签聚类和相似度约束对齐人体特征与人脸特征,有效融合多源人像特征,生成渐进多源融合的行人特征;将待查询人员的人脸图像、人体图像及其相对应的人脸模拟素描画像、人体模拟素描画像输入到经训练的人像聚档模型,得到待查询人员的渐进多源融合的行人特征,并计算其与数据库中每个参考样本的渐进多源融合的行人特征的相似度,以进行人像聚档。
-
公开(公告)号:CN119205752A
公开(公告)日:2024-12-27
申请号:CN202411703532.1
申请日:2024-11-26
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06T7/00 , G06N3/045 , G06V10/26 , G06V10/52 , G06V10/54 , G06V10/80 , G06V10/82 , G06V20/40 , H04N17/00
Abstract: 本发明公开了一种基于注意力引导的屏幕内容视频质量评价方法及装置,涉及视频质量评价领域,包括:构建时空融合的屏幕内容视频质量评价模型并训练,得到经训练的屏幕内容视频质量评价模型,屏幕内容视频质量评价模型包括空域质量评价分支和时域质量评价分支;获取屏幕内容视频并提取得到若干个碎片化视频和若干个关键帧;将每个碎片化视频和关键帧输入经训练的屏幕内容视频质量评价模型,分别经过空域质量评价分支和时域质量评价分支,得到空域质量分数和时域质量分数,两者结合得到屏幕内容视频的质量分数。本发明解决现有视频质量评价方法的敏感性差,视觉质量评价准确度低等问题。
-
公开(公告)号:CN118864287B
公开(公告)日:2024-11-29
申请号:CN202411319738.4
申请日:2024-09-23
Applicant: 华侨大学
Abstract: 本发明公开了一种渐进式单幅图像雨雪去除方法、装置及可读介质,涉及图像处理领域,包括:构建基于循环密集网络的图像雨雪去除模型并训练,得到经训练的图像雨雪去除模型,图像雨雪去除模型包括堆叠设置的若干个内外密集连接子网络,每个内外密集连接子网络包括堆叠设置的若干个内外密集连接块,每个内外密集连接块包括依次连接的长短期记忆模块、第一卷积层、通道注意力模块和第二卷积层;将退化图像输入经训练的图像雨雪去除模型,当前阶段的内外密集连接子网络输出的恢复估计与退化图像输入下一阶段的内外密集连接子网络中,最后一个阶段的内外密集连接子网络输出恢复图像。本发明解决目前渐进式雨雪去除方法所恢复图像中存在的伪影问题。
-
公开(公告)号:CN118450127B
公开(公告)日:2024-11-05
申请号:CN202410885047.4
申请日:2024-07-03
Applicant: 华侨大学
IPC: H04N19/147 , H04N19/625 , H04N19/136 , H04N19/149
Abstract: 本发明公开了一种融合空频域显著性特征的SCV编码感知码率控制方法及装置,涉及视频编码领域,方法包括:获取屏幕内容视频,通过卷积、相似度计算,对屏幕内容视频在空域上进行显著性建模,获得空域的显著性特征;其次利用DCT变换,对屏幕内容视频在频域上进行显著性建模,获得频域的显著性特征;然后利用显著性因子指导CTU级的目标比特分配;最后通过显著性因子构建显著性启发的感知码率控制模型,调节参数,实现码率控制。本发明通过提取空域和频域的显著性特征并加以融合求得显著性因子,使用显著性因子指导码率控制,能够提高编码率失真性能,提升码率分配精度。
-
公开(公告)号:CN118864287A
公开(公告)日:2024-10-29
申请号:CN202411319738.4
申请日:2024-09-23
Applicant: 华侨大学
Abstract: 本发明公开了一种渐进式单幅图像雨雪去除方法、装置及可读介质,涉及图像处理领域,包括:构建基于循环密集网络的图像雨雪去除模型并训练,得到经训练的图像雨雪去除模型,图像雨雪去除模型包括堆叠设置的若干个内外密集连接子网络,每个内外密集连接子网络包括堆叠设置的若干个内外密集连接块,每个内外密集连接块包括依次连接的长短期记忆模块、第一卷积层、通道注意力模块和第二卷积层;将退化图像输入经训练的图像雨雪去除模型,当前阶段的内外密集连接子网络输出的恢复估计与退化图像输入下一阶段的内外密集连接子网络中,最后一个阶段的内外密集连接子网络输出恢复图像。本发明解决目前渐进式雨雪去除方法所恢复图像中存在的伪影问题。
-
公开(公告)号:CN118411583B
公开(公告)日:2024-10-22
申请号:CN202410836696.5
申请日:2024-06-26
Applicant: 华侨大学
IPC: G06V10/776 , G06N3/0464 , G06V10/54 , G06V10/74 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于多特征融合的沉浸式视频质量评价方法及装置,涉及视频处理领域,包括:对参考纹理视频序列和失真纹理视频序列采用3D‑LOG滤波器进行特征提取,得到参考纹理特征和失真纹理特征,并计算得到纹理特征相似度,基于纹理特征相似度通过3D‑LOG池化策略得到纹理视频质量分数;根据参考深度视频序列和失真深度视频序列计算得到参考深度特征和失真深度特征;根据参考深度特征和失真深度特征计算得到深度特征相似度并确定梯度权重,根据深度特征相似度和梯度权重计算得到深度视频质量分数;根据纹理视频质量分数和深度视频质量分数计算得到待评价的沉浸式视频的质量分数,解决现有视频评价算法不符合人眼视觉特性和沉浸式视频的特点的问题。
-
公开(公告)号:CN118368483B
公开(公告)日:2024-09-06
申请号:CN202410788949.6
申请日:2024-06-19
Applicant: 华侨大学
IPC: H04N21/44 , G06V20/40 , G06V10/764
Abstract: 本发明公开了一种电网环境下的视频帧间篡改检测方法、装置、设备及介质,方法包括以下步骤:获取包含多个视频的数据集;对每个视频,计算每帧画面的所有行像素的平均亮度值,获得每帧的行亮度序列,并连接所有帧的行亮度序列获得行亮度信号样本;对行亮度信号样本采用去除直流分量和下采样操作,获得预处理后的一维时间序列样本;利用一维时间序列样本训练时间序列异常检测模型;通过序列异常检测模型对待检测的视频进行检测,以输出所述视频的分类结果。本发明无须依赖参考电网频率数据库,也无需对视频中的电网频率信号进行估计,采用神经网络方法学习视频亮度序列的异常特征来检测视频帧间篡改,适用场景多,实用性强。
-
公开(公告)号:CN118334711B
公开(公告)日:2024-08-27
申请号:CN202410757573.2
申请日:2024-06-13
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06V40/10 , G06N3/0455 , G06N3/0464 , G06T7/70 , G06V10/26 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于服装描述生成的行人性别与年龄识别方法及装置,涉及图像识别领域,包括:构建行人性别与年龄识别模型,通过线性映射层和前a层Transformer块将行人图像处理为识别特征和图像特征,利用人体部位检测模型获取行人图像中的人体部位的位置,并裁剪出各个人体部位图像,利用图像字幕生成模型生成各个人体部位图像对应的服装文字描述,并利用词嵌入模型将服装文字描述映射为服装文字描述向量,将服装文字描述向量输入特征提取模块,提取得到对应的向量特征,将所有向量特征拼接后再连接至识别特征和图像特征后,并依次经过后b层Transformer块、第一全连接层和Softmax函数层,得到识别结果,解决性别与年龄识别技术受观察角度与环境等因素影响较大的问题。
-
公开(公告)号:CN114239730B
公开(公告)日:2024-08-20
申请号:CN202111564321.0
申请日:2021-12-20
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
IPC: G06F16/901 , G06N5/025 , G06F40/30 , G06V10/44 , G06F16/33 , G06F16/56 , G06N3/045 , G06N3/0464
Abstract: 本发明公开了一种基于近邻排序关系的跨模态检索方法,包括:构建用于图像模态数据以及文本模态数据的深度语义特征提取的深度神经网络模型;将图像数据与文本数据对分别输入到所述深度神经网络模型中进行训练;结合近邻样本排序损失函数和语义相似度度量损失函数,计算语义对齐的损失值,通过训练缩小损失值,得到训练好的深度神经网络模型;通过训练好的深度神经网络模型提取到图像数据和文本数据间的公共语义表达,并将图像的深度语义特征与文本的深度语义特征转化到公共语义空间中,实现语义相似度的度量和检索。本发明方法能够有效地实现图像和文本两种不同模态数据间的跨模态检索。
-
公开(公告)号:CN118196840B
公开(公告)日:2024-08-09
申请号:CN202410610290.5
申请日:2024-05-16
Applicant: 华侨大学
Abstract: 本发明公开了一种基于语义偏好挖掘的行人再辨识方法,涉及人工智能、机器视觉领域,包括:利用预训练的语义分割模型将行人图像处理为语义分割图,将语义分割图空间划分为若干部件语义块,计算不同语义在语义分割图与部件语义块中的比例,根据不同语义的比例对部件语义块分组进行语义对齐,获得各部件语义块分组对应的部件序号;基于部件序号对部件特征分组,利用自注意网络将各部件特征组投影到公共嵌入空间并进行偏好挖掘,继而利用偏好信息对各部件特征组进行自适应聚合,增强行人再辨识准确性。
-
-
-
-
-
-
-
-
-