-
公开(公告)号:CN110929886A
公开(公告)日:2020-03-27
申请号:CN201911248776.4
申请日:2019-12-06
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书中的实施例提供了模型训练、预测方法及其系统。模型被划分成本地模型和中心节点模型,各训练节点训练相同结构的本地模型,中心节点训练中心节点模型。训练过程中,各训练节点将训练样本的特征值拆分以获得特征值分片,互相交换特征值分片,基于交换结果及本地模型的第一模型参数通过秘密共享算法计算本地模型的第一输出分片,将第一输出分片发送给中心节点。中心节点基于同一样本ID对应的各训练节点的第一输出分片计算第一输入,基于同一样本ID对应的第一输入和样本标签训练中心节点模型,向各训练节点反馈中心节点模型输入层的目标梯度。各训练节点基于目标梯度更新本地模型参数。如此,可以保护数据隐私。
-
公开(公告)号:CN110929870A
公开(公告)日:2020-03-27
申请号:CN202010096248.8
申请日:2020-02-17
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N3/08
Abstract: 本说明书实施例提供用于经由多个数据拥有方来训练图神经网络模型的方法及装置。在该方法中,图神经网络模型被分割为判别模型以及多个图神经网络子模型。在进行模型训练时,各个数据拥有方将各自的特征数据子集提供给各自的图神经网络子模型,以得到各个节点的特征向量表示。各个数据拥有方从服务端接收判别模型,并使用各个节点的特征向量表示来得到各个节点的当前预测标签值,由此计算出各个数据拥有方处的当前损失函数,并基于当前损失函数来确定出判别模型的梯度信息以及更新各自的图神经网络子模型。各个数据拥有方将各自的梯度信息提供给服务端,以供服务端来更新判别模型。利用该方法,能够保证各个数据拥有方处的私有数据的数据安全。
-
公开(公告)号:CN110889139A
公开(公告)日:2020-03-17
申请号:CN201911174422.X
申请日:2019-11-26
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种针对用户隐私数据进行多方联合降维的方法和装置。其中多方中的各个数据持有方本地拥有部分用户数据作为隐私数据。为了保证各个持有方隐私数据安全,将有待基于各方隐私数据形成的协方差矩阵拆解为各个持有方可以本地计算或者可以通过秘密分享的矩阵乘法SMM进行安全计算的矩阵;并且,通过安全多方计算MPC的方式,共同确定出协方差矩阵的本征矩阵。如此,各个持有方可以基于本征矩阵对本地数据进行降维,并最终形成降维的用户特征数据。通过这样的方式,确保了用户隐私数据的安全。
-
公开(公告)号:CN110766166A
公开(公告)日:2020-02-07
申请号:CN201911014064.6
申请日:2019-10-23
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N20/00 , G06F16/9536
Abstract: 本说明书实施例提供了一种由用户终端执行的推送模型优化方法,所述终端与第一用户相对应,所述终端本地包括当前的推送模型,所述推送模型基于矩阵分解方法进行预测,所述方法包括:从本地获取第一用户针对第一对象的评分;基于所述评分、所述第一用户的当前嵌入向量和所述第一对象的当前嵌入向量,计算用于优化所述第一对象的嵌入向量的第一梯度向量;确定所述第一用户的当前的预定数目的邻居用户;将所述第一梯度向量分别发送给所述预定数目的邻居用户各自的终端,以使得每个邻居用户的终端基于所述第一梯度向量分别优化其本地的第一对象的嵌入向量。
-
公开(公告)号:CN110751291A
公开(公告)日:2020-02-04
申请号:CN201911039139.6
申请日:2019-10-29
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种实现安全防御的多方联合训练神经网络的方法,其中多方包括对应于多个数据方的多个客户端,以及中立的服务器。多个客户端之间使用安全多方技术MPC,在保护数据隐私的基础上共同计算一个或多个隐层,然后将计算出的隐层放在中立的服务器上,进行其余复杂的神经网络计算,以得到预测结果,用于跟样本标签比对确定预测损失。此外,多个客户端中还各自部署模拟攻击者的攻击者模型,并各自计算攻击者损失。进一步地,服务器根据基于预测损失和攻击者损失确定的训练损失,调整其上部署的其余复杂神经网络的参数,多个客户端根据训练损失调整各自维护的共同计算隐层所对应的部分参数,以及根据攻击者损失调整攻击者模型的参数。
-
公开(公告)号:CN113407988B
公开(公告)日:2025-02-25
申请号:CN202110580162.7
申请日:2021-05-26
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种控制通信量的确定业务数据特征有效值的方法及装置。业务数据属于隐私数据,多个参与方的业务数据可假定拼接成联合数据,其包括多个对象针对多个特征项的特征值。多方分别获取联合数据分片、样本的预测值分片以及模型参数分片。多方中的选定参与方,利用多方中的预测值分片重构完整的预测值数据;利用多方安全计算,通过多方交互,基于多方的联合数据分片和选定参与方的预测值数据,确定多方分别对应的相关性数据分片,其中包括多个特征项之间的相关性数据;采用显著性检验法,通过多方之间的安全交互,基于多方的模型参数分片和相关性数据分片中的对应数据,确定模型参数对应的特征项在提升业务预测模型效果上的有效值。
-
公开(公告)号:CN112084476B
公开(公告)日:2024-11-22
申请号:CN202010908350.3
申请日:2020-09-02
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F21/32 , G06F21/60 , G06Q20/40 , G06N3/0464 , G06N3/08
Abstract: 本说明书提供一种生物识别身份验证方法、客户端、服务器、设备及系统,可以利用服务器将生物识别模型进行拟合,获得生物识别函数,将生物识别函数以及生物特征发送至客户端,由客户端本地保存。当客户端接收到生物验证请求后,客户端可以利用本地存储的生物识别函数以及生物样本特征对用户进行身份验证。客户端在对用户进行身份验证时,不需要与服务器进行通信,直接利用本地存储的数据即可以进行,实现了离线状态下的生物识别身份验证,同时,将生物识别模型拟合成为生物识别函数,降低了计算的复杂度,提高了本地生物识别的速度。
-
公开(公告)号:CN112148755B
公开(公告)日:2024-10-18
申请号:CN202010927160.6
申请日:2020-09-07
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/2455 , G06F16/248 , G06F21/60 , G06F21/64
Abstract: 本说明书提供一种基于秘密共享的隐私数据访问方法、装置、设备及系统,通过将待访问隐私数据的序号进行秘密共享拆分成序号第一份额、序号第二份额分发给保存有隐私数据库份额的第一方和第二方,使得第一方和第二方均无法获知待访问隐私数据的序号。第一方和第二方利用接收到的序号第一份额、序号第二份额对各自保存的数据库第一份额、数据库第二份额中的数据的序号进行打乱。再通过两次不经意传输,使得第一方和第二方分别从对方那获取到访问数据第一份额、访问数据第二份额,基于访问数据第一份额、访问数据第二份额可以获得待访问隐私数据,可以实现第一方和第二方在互相保密的前提下访问隐私数据库中某个元素。
-
公开(公告)号:CN113722760B
公开(公告)日:2024-10-15
申请号:CN202111040498.0
申请日:2021-09-06
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例公开了一种隐私保护的模型训练方法和系统,所述参与方包括多个训练成员以及服务器,训练成员以及服务器具有相同结构的待训练模型,所述方法其中一轮迭代更新包括:利用自身持有的训练样本对待训练模型进行至少一次本地训练,得到模型数据;所述模型数据中的部分元素添加有噪声;至少基于当前迭代轮次确定传输数据比例,并基于所述传输数据比例从所述模型数据中选出部分元素,得到传输数据;将所述传输数据传输给服务器,以便服务器进行模型数据聚合;接收服务器返回的模型数据更新结果,并基于所述模型数据更新结果进行本地模型更新,将更新后的本地模型作为待训练模型进行下一轮迭代更新,或者基于此确定最终模型。
-
公开(公告)号:CN113657617B
公开(公告)日:2024-08-13
申请号:CN202111077337.9
申请日:2020-04-23
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N20/20
Abstract: 本说明书实施例公开了一种模型联合训练的方法及系统。所述方法包括:多个联合训练的参与终端分别基于所述终端自身持有的私有数据联合进行模型训练,多个联合训练的参与终端分别使用基于梯度的优化算法生成各自的梯度;所述多个参与终端分别将所述各自的梯度发送给服务器;所述服务器从多个所述梯度中选取可信任梯度,并且根据选取的所述可信任梯度更新所述联合训练模型的参数;所述样本数据为文本数据、语音数据或者图形数据。
-
-
-
-
-
-
-
-
-