-
公开(公告)号:CN113763471A
公开(公告)日:2021-12-07
申请号:CN202110997123.7
申请日:2021-08-27
Abstract: 本发明公开了一种基于视觉的弹孔检测方法及系统,方法包括:S1,获取打靶弹孔图像数据集并进行弹孔标注;S2,构造一种卷积特征与纹理特征深度融合的超轻量化网络,并基于弹孔图像数据,进行模型训练得到检测模型;S3,基于训练得到的检测模型进行推理,获取单帧弹孔检测结果;S4,基于多帧检测结果,构建当前帧的弹孔积分图;S5,基于当前帧弹孔积分图与前一帧的弹孔积分图,进行匹配和帧差,获取当前帧的新增弹孔;系统包括:聚焦层、嵌套瓶颈层、卷积层,以及由单尺度目标回归子网络、纹理特征提取单元、特征融合与优选模块构成的特征融合与单尺度目标回归模块;本发明降低了资源消耗,且检测准确度、鲁棒性好。
-
公开(公告)号:CN113657561A
公开(公告)日:2021-11-16
申请号:CN202111220897.5
申请日:2021-10-20
Applicant: 之江实验室
Abstract: 本发明公开了一种基于多任务解耦学习的半监督夜间图像分类方法,将白天带标签的样本与夜间无标签的样本,一同输入特征提取网络,其中白天样本提取的特征向量输入分类网络头,采用交叉熵损失函数进行监督;夜间样本提取的特征向量,首先输入分类网络头获得伪标签,再根据伪标签构造正负样本对后输入自监督网络头,采用角度对比损失函数进行监督训练;完成模型多任务训练后,将夜间数据集中少量带标签的样本输入特征提取网络与分类网络头,进行迭代自蒸馏学习,最终实现夜间数据集可以有效分类的效果。
-
公开(公告)号:CN113657355A
公开(公告)日:2021-11-16
申请号:CN202111220354.3
申请日:2021-10-20
Applicant: 之江实验室
Abstract: 本发明提供一种融合分割信息的全局局部感知行人重识别方法,包括训练阶段和测试阶段,在训练阶段,通过公开的分割模型获取行人训练集每个行人的分割掩码,将所述分割掩码输入到掩码松弛模块获得松弛掩码,将行人图像分块与所述松弛掩码分块融合后输入至Transformer网络模型,得到全局特征和分块局部特征后进行损失计算,调整网络模型参数,训练并保存最优网络模型;所述测试阶段,输入待检索行人和底库行人图像至分割模型获取分割掩码,将所述分割掩码输入到掩码松弛模块获得松弛掩码,将行人图像分块与所述松弛掩码分块融合后输入至训练好的网络模型,获得全局特征和分块局部特征并归一化处理,后通过计算待检索行人和底库行人的相似度来识别行人。
-
公开(公告)号:CN113436237A
公开(公告)日:2021-09-24
申请号:CN202110987333.8
申请日:2021-08-26
Applicant: 之江实验室
Abstract: 本发明涉及一种基于高斯过程迁移学习的复杂曲面高效测量系统,主要针对形貌随机复杂的2.5D连续曲面,由于训练数据集和测试数据存在的分布上的差异,利用高斯过程在低维隐空间对测试数据进行操作,使其分布逼近训练数据集,该系统包括点云自适应采样模块、曲面配准和稀疏误差重建模块、误差像素化和归一化模块、编码器模块、高斯过程处理模块、解码器模块、解归一化模块、点云空间映射模块,最终将稀疏的点云数据进行增强得到高质量高密度的点云数据。该系统针对接触式形貌测量传感器测量效率较低的问题,通过结合高斯过程和基于深度学习的超分辨技术,完成对稀疏测量数据的高精度加密,具有测量效率高、点云上采样精度高和曲面细节还原性高的优点。
-
公开(公告)号:CN113435588A
公开(公告)日:2021-09-24
申请号:CN202110988504.9
申请日:2021-08-26
Applicant: 之江实验室
Abstract: 本发明公开了基于深度卷积神经网络BN层尺度系数的卷积核嫁接方法,首先设置两组不同的训练策略;然后采用两组策略训练同构的两个深度卷积神经网络,训练过程中,对两个深度卷积神经网络的BN层尺度系数进行稀疏化;同时采用特征图学习的方式,保持两个深度卷积神经网络的层内卷积核权值分布的一致性;根据BN层尺度系数,每隔一定迭代次数,将其中一个深度卷积神经网络层内BN层对应尺度系数小的卷积核,替换为另一个深度卷积神经网络层内BN层对应尺度系数大的卷积核。
-
公开(公告)号:CN112990371B
公开(公告)日:2021-09-10
申请号:CN202110459160.2
申请日:2021-04-27
Applicant: 之江实验室
Abstract: 本发明属于计算机视觉识别技术领域,涉及一种基于特征扩增的无监督夜间图像分类方法。采用具有白天图像分类标签的公开数据集训练分类网络,经分类网络提取输入图像的特征向量,并计算各类别的特征均值与协方差矩阵;将无标签的夜间图像输入分类网络获得该图像的伪标签,根据伪标签计算夜间图像各类别在特征空间的特征均值与协方差矩阵;对同类别的白天、夜间图像获取的协方差矩阵进行加权平均获得最终协方差矩阵;根据各类别夜间图像特征均值和加权平均后的协方差矩阵进行特征采样;将采样的特征值与原有特征值共同重新训练分类网络。本发明通过学习有标签的白天图像的特征分布,在特征层面对夜间数据进行扩增,从而实现对夜间图像的无监督分类。
-
公开(公告)号:CN113297906A
公开(公告)日:2021-08-24
申请号:CN202110423900.7
申请日:2021-04-20
Abstract: 本发明公开了一种基于知识蒸馏的行人重识别模型压缩方法及评价方法,压缩方法包括如下步骤:S1:预训练行人重识别教师模型;S2:构建行人重识别学生模型;S3:构建低阶状态蒸馏损失和高阶结构蒸馏损失,将教师模型的知识迁移到学生模型,联合优化行人重识别任务损失和蒸馏损失进行训练;评价方法还包括如下步骤:S4:将底库测试集输入训练好的学生模型,获得底库行人特征;S5:将查询测试集输入训练好的学生模型,获得行人特征,与底库行人特征进行相似度计算,经度量排序找到与之具有相同身份的底库行人图片,计算时间效率和性能准确度。
-
公开(公告)号:CN113284051A
公开(公告)日:2021-08-20
申请号:CN202110834275.5
申请日:2021-07-23
Applicant: 之江实验室
IPC: G06T3/40
Abstract: 本发明属于计算机视觉、图像处理领域,涉及一种基于频率分解多注意力机制的人脸超分辨方法,利用小波变换及其逆变换均可逆的性质,将输入的低分辨率人脸图像进行频率分解,针对不同频率的特征,采用不同的核卷积构建基础模块,自适应集成不同感受野的特征,利用残差注意力模块,包含像素、空间和通道注意力机制,对不同频率的特征分别进行处理,低频部分纹理采用较少计算量的注意力,高频部分采用更多的残差注意力模块,在保持计算量的同时将更多的网络应用于高频部分,利用预训练的人脸关键点提取网络进行关键点提取并进行反馈,增强轮廓特征,利用生成抵抗网络增强纹理特征。
-
公开(公告)号:CN113269715A
公开(公告)日:2021-08-17
申请号:CN202110377657.X
申请日:2021-04-08
IPC: G06T7/00
Abstract: 本发明公开了一种广义Bedrosian准则下的各向同性图像分解方法,属于计算机视觉中的图像分解技术,对于任意的各向同性图像提出广义Bedrosian准则,可以实现任意各向同性图像的π/2相移,利用广义Bedrosian准则的特性和经验给定的辅助分量可以突破二倍频限制以实现任意相近频率分量的各向同性图像的分解,还可以实现各向异性图像的分解,可以实现任意频率接近但又不相同的各向同性图像的分解。
-
公开(公告)号:CN113255899A
公开(公告)日:2021-08-13
申请号:CN202110673166.X
申请日:2021-06-17
Applicant: 之江实验室
Abstract: 本发明公开了一种通道自关联的知识蒸馏方法与系统包括以下步骤:步骤S1:向教师模型和学生模型中输入相同的图片数据,得到学生模型和教师模型的图片特征,选定学生模型和教师模型中需要进行知识蒸馏的特征层;步骤S2:将选定的学生模型和教师模型特征层的通道进行通道自关联;步骤S3:自关联后的教师模型通道通过加权方式传输知识至学生模型通道;步骤S4:根据关联的通道蒸馏知识,并进行训练,在训练时同时优化自关联的二维矩阵和学生模型;S5:部署训练好的学生模型,输入图片数据进行推理测试。
-
-
-
-
-
-
-
-
-