-
公开(公告)号:CN104376234B
公开(公告)日:2017-12-26
申请号:CN201410727536.3
申请日:2014-12-03
Applicant: 苏州大学
IPC: G06F19/22
Abstract: 本发明公开了一种启动子识别方法及系统:获取测试数据,确定所述测试数据的一次特征向量;利用自编码器,对所述测试数据的一次特征向量进行特征提取,得到所述测试数据的二次特征向量;利用预设支持向量机,对所述测试数据的二次特征向量进行分类,得到分类结果,当所述分类结果满足预设条件时,确定所述测试数据为启动子。相较现有技术中直接对利用KL散度提取到的特征向量进行分类判定,本发明利用了自编码器的神经网络学习算法,有效地提高了对启动子的识别性能,进而提高了识别准确度。
-
-
公开(公告)号:CN103679162B
公开(公告)日:2017-07-14
申请号:CN201410003346.7
申请日:2014-01-03
Applicant: 苏州大学
IPC: G06K9/00
Abstract: 本申请提供了一种人脸识别方法,通过互为近邻的同类样本之间的实际距离,并构建类内邻接图,通过互为近邻的异类样本之间的实际距离,并构建类间邻接图,确定最佳目标维数和投影变换矩阵,将降维后的各个训练样本按照所述投影变换矩阵变换到判别子空间中,利用所述投影变换矩阵,将待测样本映射到所述判别子空间中,得到测试样本;利用最近邻分类模块,对所述测试样本进行分类。因此,本申请的类内邻接图和类间邻接图是通过近邻样本之间的实际距离得到的,能够反映样本真实的局部结构,因此提高了对待测样本进行分类的分类性能。
-
公开(公告)号:CN103927530B
公开(公告)日:2017-06-16
申请号:CN201410186226.5
申请日:2014-05-05
Applicant: 苏州大学
Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,通过从原始数据样本中选取训练集样本和测试集样本,并挑选训练样本,计算真实相似度,与计算出的计算相似度进行比较,从而选取最终分类器,并将训练样本中每类样本的几何平均值以及测试集样本中的每个测试样本带入最终分类器中,获取分类结果,进而获取测试样本的类别。本方案首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。
-
公开(公告)号:CN103927560B
公开(公告)日:2017-03-29
申请号:CN201410177935.7
申请日:2014-04-29
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本申请提供一种特征选择方法及装置,该方法通过响应接收到的训练样本集,生成第一训练样本集、与该第一训练样本集对应的第一特征索引集、第二训练样本集以及与该第二训练样本集对应的第二特征索引集,根据第一训练样本集计算第一元素,进而完成对第一特征索引集的更新,根据第二训练样本集计算第二元素,进而完成对第二特征索引集的更新,当更新后的第一特征索引集/第二特征索引集中各个特征的数量和满足预设值时,根据得到第一特征索引集以及第二特征索引集计算特征索引集,完成对特征的选择,以实现在特征选择的过程中,在保证学习效率的基础上,降低计算代缴、提高推广能力。
-
公开(公告)号:CN103679160B
公开(公告)日:2017-03-22
申请号:CN201410003078.9
申请日:2014-01-03
Applicant: 苏州大学
Abstract: 本发明提供了一种人脸识别的方法,该方法基于一类支持向量机来学习人脸图像之间的相似性,包括:对人脸样本进行分类得到训练样本组和测试样本组;对训练样本组中的训练样本进行分类得到至少两个类别,在每个类别中获取训练样本生成差样本对,并构造训练样本对组;依据训练样本对组对一类支持向量机进行训练,得到其决策模型参数,并得到相似性判别模型;将测试样本组中任意获取两个测试样本生成的测试差样本对输入相似性判别模型中进行相似性判断。在该方法中,输入一类支持向量机的训练样本采用分类并依据同类训练样本中生成训练样本差的方式,使得输入一类支持向量机的数据量减少,降低了计算的复杂度。
-
公开(公告)号:CN103310237B
公开(公告)日:2016-08-24
申请号:CN201310286449.4
申请日:2013-07-09
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本发明实施例公开了一种手写体数字识别方法及系统,在对手写体数字进行降维的过程中,对于每一个图像数据都通过K个近邻来线性表示,而对每一个图像数据通过K个近邻线性表示时的加权系数则正交匹配算法获取,而且,通过构造加权系数矩阵来对训练图像数据进行降维,而对待识别图像则通过加权系数向量及其K个近邻的降维后的向量数据进行降维,通过实验可知,本申请实施例提供的手写体数字识别方法,提高了手写体数字识别的识别率。
-
公开(公告)号:CN103164701B
公开(公告)日:2016-06-01
申请号:CN201310123349.X
申请日:2013-04-10
Applicant: 苏州大学
IPC: G06K9/20
Abstract: 本发明公开了一种手写体数字识别方法及装置。该手写体数字识别方法,包括:确定待识别图像,该待识别图像中包含手写体形式的待识别数字类别标签;依据像素点的灰度值,确定该待识别图像中的特定的像素点的像素特征;依据该特定的像素点的像素特征,确定该待识别图像的协方差;基于李群KNN算法,依据预设的训练图像集合中的各训练图像的协方差和该待识别图像的协方差,确定该待识别图像的近邻标签集;将该近邻标签集中个数最多的数字类别标签确定为该待识别数字类别标签。可见,与现有技术相比,本方案中,作为分类问题的特征的协方差依据特定的像素点的灰度值获得,有效利用了待识别图像的空间信息,因此,提高了手写体数字的识别准确性。
-
公开(公告)号:CN103218613B
公开(公告)日:2016-04-20
申请号:CN201310123085.8
申请日:2013-04-10
Applicant: 苏州大学
IPC: G06K9/20
Abstract: 本发明公开了一种手写体数字识别方法及装置。该手写体数字识别方法,包括:确定待识别图像;依据像素点的灰度值,确定该待识别图像中的特定的像素点的至少三种像素特征;依据该特定的像素点的至少三种像素特征,分别确定该待识别图像的相应协方差;分别计算该待识别图像的每一协方差与预设的训练图像集合所包含每一类数字类别标签相应的李群均值之间的距离;分别将为该待识别图像的每一个协方差所确定出的多个距离中的最小距离所对应数字类别标签确定为备用数字类别标签;将该备用数字类别标签中个数最多的数字类别标签确定为待识别图像中的待识别数字类别标签。可见,通过利用本方案,可以有效提高手写体数字的识别准确性。
-
公开(公告)号:CN105469063A
公开(公告)日:2016-04-06
申请号:CN201510884791.3
申请日:2015-12-04
Applicant: 苏州大学
IPC: G06K9/00
CPC classification number: G06K9/00288 , G06K9/00268
Abstract: 本发明公开了鲁棒人脸图像主成分特征提取方法及识别装置,通过同时考虑人脸图像训练样本数据的低秩与稀疏特性,将经过一个投影嵌入的主成分特征直接进行低秩和L1-范数最小化,编码得到一个描述性强的鲁棒投影P,直接提取人脸图像的联合低秩与稀疏主成分特征,同时可完成图像纠错处理;利用鲁棒投影模型的训练样本的嵌入主成分特征,通过额外一个分类错误最小化问题得到一个线性多类分类器W*,用于人脸测试图像的归类;在处理测试样本时,利用线性矩阵P提取其联合特征,进而利用分类器W*进行归类;通过引入低秩恢复和稀疏描述的思想,可编码得到描述性更强的人脸图像主成分特征,可去除噪音,有效提高了人脸识别的效果。
-
-
-
-
-
-
-
-
-