一种双通道分布式传感检测装置

    公开(公告)号:CN104897618A

    公开(公告)日:2015-09-09

    申请号:CN201510312470.6

    申请日:2015-06-09

    Abstract: 本发明公开了一种双通道分布式传感检测装置,包括光源、单模光纤、微纳光纤、光纤拉伸装置、第一传感膜、第二传感膜和探测器;光源发出的光耦合入单模光纤,经过单模光纤与微纳光纤的错芯焊接处,激励起LP11模式并在微纳光纤中传播,调节光纤拉伸装置使在微纳光纤中传播的LP01模式和LP11模式发生模式干涉产生周期性光场,将光场光斑与第一传感膜重合,在第一传感膜处激发表面等离子共振;进一步调节光纤拉伸装置使光场光斑与第二传感膜重合,在第二传感膜处激发表面等离子体共振,从而产生双通道分布式传感,探测器用于接收光信号进行检测。本发明具有体积小、结构简单,信号抗干扰能力强的优点。

    一种光纤表面等离子体激元激发聚焦装置及其制作方法

    公开(公告)号:CN104698539A

    公开(公告)日:2015-06-10

    申请号:CN201510102747.2

    申请日:2015-03-09

    Abstract: 本发明属于纳米光子学领域,尤其涉及一种光纤径向偏振光SPP激发聚焦装置及制作方法。光纤表面等离子体激元激发聚焦装置,由光源1、单芯光纤2、环形芯光纤3、把单芯光纤2和环形芯光纤3一端焊接并在焊点处拉锥而形成的耦合锥区4、在环形芯光纤3另一端经过加工形成的圆锥台结构5、环形排布于环形芯光纤3圆锥台结构端面的纳米金粒子6及镀在圆锥台端面的金膜7组成。本发明利用径向偏振光照射环形排布于光纤端面金膜上的纳米金粒子阵列,每个金粒子的SPP激励光都为TM模,使得结构中心处形成SPP干涉相长,得到单个尖锐聚焦光斑,效率远高于线性偏振光。

    一种基于椭圆芯光纤的单光纤光镊

    公开(公告)号:CN104698532A

    公开(公告)日:2015-06-10

    申请号:CN201510102716.7

    申请日:2015-03-09

    CPC classification number: G02B6/26 G21K1/00

    Abstract: 本发明属于光纤技术研究领域,具体涉及的是一种能够稳定捕获粒子的基于椭圆芯光纤的单光纤光镊。基于椭圆芯光纤的单光纤光镊,包括椭圆芯光纤1,光纤光源2,将椭圆芯光纤(1)的一端与光纤光源2焊接,在椭圆纤芯中激励起沿椭圆纤芯长轴稳定分布的LP11模式光场,椭圆芯光纤1的另一端加工成楔形光纤尖,LP11模式光场在楔形端面处发生折射,出射光场在楔形光纤尖前方汇聚形成光学势阱。本发明提供一种新的单光纤光镊并进一步完善了单光纤光镊的功能;进一步简化了LP11模式光场的激励方法,降低了单光纤光镊的制作难度,提高了单光纤光镊的捕获效率;采用的器件价格低廉,制备方法简单,适合于在生物医学领域推广。

    一种基于光热效应的光纤光开关

    公开(公告)号:CN104678503A

    公开(公告)日:2015-06-03

    申请号:CN201510104975.3

    申请日:2015-03-11

    CPC classification number: G02B6/3538 G02B6/3526

    Abstract: 本发明属于光纤通信领域,具体涉及的是一种基于光热效应的光纤光开关。基于光热效应的光纤光开关,包括控制光纤、接收光纤、自聚焦透镜、光致折射率变化液体、封装毛细管,控制光纤为双芯光纤,信号光在其中一芯传输,出射到光致折射率变化液体中并经自聚焦透镜耦合至接收光纤,控制光在双芯光纤的另一芯传输,另一芯纤芯端面处使得控制光能够在此端面折射,照射在信号光传输光路上,当改变控制光光源功率时,两束光交点处的液体温度改变进而导致折射率发生改变,造成信号光传输光路发生变化,偏离接收光纤,所述的控制光纤、接收光纤、自聚焦透镜、光致折射率变化液体均封装在毛细管中。本发明无需引入加热器,简化了热光开关的结构。

    一种捕获位置横向可调的单光纤光镊

    公开(公告)号:CN103996423A

    公开(公告)日:2014-08-20

    申请号:CN201410105307.8

    申请日:2014-03-21

    Abstract: 本发明属于光纤技术研究领域,特别涉及一种捕获位置横向可调的单光纤光镊。捕获位置横向可调节的单光纤光镊,包括普通通信用标准单模光纤,光纤光源和模式旋转装置,光纤光源的尾纤与单模光纤错位连接,在单模光纤的纤芯中激发出LP11模光束,单模光纤的另一端与模式旋转装置连接后,末端制备成倾斜圆锥结构尖端,倾斜空间锥角为,由模式旋转装置旋转LP11模光束剖面光斑的分布方向,使通过倾斜圆锥光纤尖汇聚的LP11模光束形成的出射光场随之旋转。本发明拓展了光纤光镊技术在极端工作环境中工作的新功能;单光纤光镊可实现捕获微粒横向位置的可控调节,使其在生物医学研究领域有广泛的应用价值。

    一种光纤电光强度调制器及其制备方法

    公开(公告)号:CN103217814A

    公开(公告)日:2013-07-24

    申请号:CN201310141332.7

    申请日:2013-04-22

    Abstract: 本发明提供的是一种光纤电光强度调制器及其制备方法。包括第一光纤(1)、第二光纤(2),第一光纤(1)和第二光纤(2)经加热、轴向拉伸、包层融合形成纤芯平行靠近的光功率耦合区(3),在光功率耦合区(3)的两侧对称设置一对电极(4),电极上连接电极引线(10),在两个电极(4)上加高电压,对光功率耦合区(3)进行极化处理,使得光功率耦合区(3)中两个纤芯(7)之间的光纤包层(8)具有电光调制特性。本发明利用了耦合效率与折射率的关系,将调制电压的变化直接转变为输出光强的变化,其优势在于极化区域缩短到厘米量级,体积小,调制速度快,便于集成化。

    光学微手及其光指力的动力控制方法

    公开(公告)号:CN101893735A

    公开(公告)日:2010-11-24

    申请号:CN201010197583.3

    申请日:2010-06-11

    Abstract: 本发明提供的是一种光学微手及其光指力的动力控制方法。将普通标准单模光纤一端与光纤光源连接,普通标准单模光纤另一端通过熔融拉锥的方式与中空三芯保偏光纤连接,中空三芯保偏光纤的另一端经精细研磨制备成锥体结构,中空三芯保偏光纤的外壁和内壁均设置金属电极,并电极分别引出连接至高压电源两极,三芯保偏光纤内壁的金属电极连接高压电源,三芯保偏光纤外壁的金属电极接地,通过调节电源电压来调节光波导纤芯的折射率,改变光波导纤芯中传输光束的相位,进而改变其出射光场分布,最终实现光阱力的动力学控制。本发明减少了对待捕获微粒的伤害;极大的提高了光纤光学微手系统的显微操作的主观能动性和操控灵活性。

    熔嵌式中空多芯保偏光纤及其制备方法

    公开(公告)号:CN101833129A

    公开(公告)日:2010-09-15

    申请号:CN201010159137.3

    申请日:2010-04-29

    Abstract: 本发明提供的是熔嵌式中空多芯保偏光纤及其制备方法。采用公知的MCVD工艺制备具有一定芯包比的光纤,光纤的芯层折射率大于包层,并且包层与外石英管的折射率相同,然后利用氢氧焰将光纤沿石英管轴向烧结于管内壁以形成预制棒;然后利用光纤拉丝塔,在正常拉丝温度的条件下进行拉丝,促使光纤变成椭圆或类椭圆形状贴附在毛细管内壁上。形成横截面结构由外到里分别是包层、椭圆芯和毛细孔;椭圆芯熔嵌在石英毛细管的内壁上,靠近毛细管内壁一侧构成厚石英包层,另一侧暴露于毛细孔的空气中,构成薄石英包层,其中椭圆芯的折射率大于石英包层的折射率的熔嵌式中空多芯保偏光纤。本发明所得光纤的强度高,制备工艺简单、成本低。

    集成于单根光纤的多光镊
    159.
    发明授权

    公开(公告)号:CN100580490C

    公开(公告)日:2010-01-13

    申请号:CN200810064013.X

    申请日:2008-02-19

    Abstract: 本发明提供的是一种集成于单根光纤的多光镊。它包括在一个公共包层中具有多个纤芯(2)的多芯光纤(1),多芯光纤的一端通过研磨加工处理形成具有对称或非对称形状的多角楔形,其侧面(3)与光纤端面(6)组成大梯度光场转换区。与其他光镊相比,本发明的改进之处主要体现在:(1)发明了利用多芯光纤构成光镊,同时捕获多个微小粒子,通过纤芯数目的调整,实现光势阱和捕获粒子数量的变更;(2)发明了通过调整纤芯几何排布结构,实现不同空间几何排列的多个微小粒子的同时捕获;(3)基于光束全反射——折射聚焦原理,可以极大地提高光镊势阱的捕获力。基于上述改进,实现了多光纤光镊的组合与集成,同时使光镊的捕获特性得到极大改善。

    基于光镊技术的具有环形波导结构的毛细管玻璃微电极

    公开(公告)号:CN101382620A

    公开(公告)日:2009-03-11

    申请号:CN200810137356.4

    申请日:2008-10-17

    Abstract: 本发明是基于光镊技术的具有环形波导结构的毛细管玻璃微电极。固定电极置于与普通光纤耦合连接的具有环形波导结构的侧抛毛细管内并设置于电极主体内,活动电极置于具有环形波导结构的拉锥后的毛细管内并固定在电极主体的前端并与固定电极对接,固定电极与活动电极的对接处之间的电极主体上设置有吸吮管,与普通光纤耦合连接的具有环形波导结构的侧抛毛细管的侧壁上通过毛细管光纤与普通光纤耦合连接装置连接普通光纤跳线。本发明是通过带有环形波导层的玻璃毛细管,实现了光镊技术与膜片钳技术的有机结合与集成,扩大并增强了光镊技术与膜片钳技术的功能,将两种高精度的生物微操纵仪器设备集于一体,扩展了系统的功能,提高了系统的性价比。

Patent Agency Ranking