-
公开(公告)号:CN109582953B
公开(公告)日:2023-04-07
申请号:CN201811302326.4
申请日:2018-11-02
Applicant: 中国科学院自动化研究所
IPC: G06F40/30 , G06F40/289 , G06F16/9535
Abstract: 本发明公开了一种资讯的言据支撑评分方法、设备和存储介质。该方法包括:对资讯库中的所有资讯分别进行深度语义向量编码;根据每个所述资讯的深度语义向量,计算所有资讯两两之间的相似度,得到语义相似度矩阵;根据所述语义相似度矩阵,构建语义网络;根据预设的随机游走模型,对所述语义网络中每个节点对应的资讯进行言据支撑评分。本发明的立足点在于评价资讯中观点的可靠性,对资讯进行深度语言向量编码,通过计算资讯两两之间的相似度,构建语义网络,进而可以计算出每个资讯的言据支撑评分,本发明准确性高,并且可以有效降低人力成本。
-
公开(公告)号:CN115311595A
公开(公告)日:2022-11-08
申请号:CN202210771422.3
申请日:2022-06-30
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种视频特征提取方法、装置及电子设备,涉及视频处理技术领域,可以应用于视频特征提取的场景。该视频特征提取方法包括:获取视频图像和视频图像对应的音频数据;将音频数据转换为声谱图,得到声谱图像;将视频图像和声谱图像输入至视频特征提取模型,得到视频特征提取模型输出的视频特征;其中,视频特征提取模型是基于样本视频数据和对偶式对比学习模型对基础神经网络模型进行预训练得到的,对偶式对比学习模型用于对样本视频数据经基础神经网络模型处理后输出的第一多模态样本特征矩阵分别进行行维度和列维度上的对比学习。本发明提供的技术方案可以提高视频特征提取的准确性和泛化性。
-
公开(公告)号:CN115311475A
公开(公告)日:2022-11-08
申请号:CN202210752086.8
申请日:2022-06-28
Applicant: 中国科学院自动化研究所 , 中国国家铁路集团有限公司
Abstract: 本发明提供一种基于内容安全的图像识别方法、装置、设备和存储介质,涉及计算机视觉技术领域,所述方法包括:获取待识别图像;将待识别图像输入至多尺度纹理感知模型,输出用于表征图像是否伪造的图像种类识别结果;其中,多尺度纹理感知模型是基于图像样本数据以及对应的图像种类标签进行训练后得到的,多尺度纹理感知模型用于基于待识别图像的多尺度纹理特征任意两通道之间的相关性,对待识别图像进行种类识别。本发明可结合多尺度纹理特征以及各特征不同通道之间的细微差异,以提高图像种类识别精准度,且提高鲁棒性和泛化性。
-
公开(公告)号:CN114241144A
公开(公告)日:2022-03-25
申请号:CN202111467249.X
申请日:2021-12-03
Applicant: 中国科学院自动化研究所
Abstract: 本申请公开了一种处理三维点云的方法、装置及存储介质。其中,方法包括:至少两个处理模块中的任一处理模块,接收三维点数据集,三维点数据集来自于处理模块之前所有层级的处理模块,分别获取三维点数据集中至少两个空间区域的区域特征数据,聚集至少两个空间区域的区域特征数据得到三维点数据集的特征数据,从而降低了三维点云的计算过程较复杂度,提高了计算速度,若处理模块是处理模型中中间层的处理模块,将三维点数据集的特征数据分别输出至到处理模块之后每一层的处理模块中,若处理模块是处理模型中最后一层处理模块,将三维点数据集的特征数据作为三维点云对应的几何表征,从而不会出现几何信息缺失,提升了三维点云得到的数据准确率。
-
公开(公告)号:CN114219936A
公开(公告)日:2022-03-22
申请号:CN202111266514.8
申请日:2021-10-28
Applicant: 中国科学院自动化研究所 , 人民中科(济南)智能技术有限公司
IPC: G06V10/25 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种目标检测方法、电子设备、存储介质和计算机程序产品,方法包括获取包含待检测目标的待检测图像;将所述待检测图像输入至目标检测模型,进行目标检测,获得所述目标检测模型输出的目标检测结果,所述目标检测模型是基于候选框及其对应的正负标签训练得到的,所述正负标签是基于所述候选框与所述候选框对应的真实框的交并比,以及动态变化的交并比阈值确定得到的。本发明通过动态变化的交并比阈值,动态变化候选框的正负标签,以使最后分配给候选框的正负标签为准确标签,从而提高候选框的标签分配准确度,进而提高目标检测模型的召回率,最终实现高性能的目标检测。
-
公开(公告)号:CN110706253B
公开(公告)日:2022-03-08
申请号:CN201910884524.4
申请日:2019-09-19
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉跟踪技术领域,具体涉及一种基于表观特征和深度特征的目标跟踪方法、系统、装置,旨在解决现有目标跟踪方法忽略目标场景的深度信息导致跟踪精度低的问题。本系统方法包括根据t‑1帧的目标位置和预设的目标尺寸,获取待追踪目标在第t帧图像的目标区域和搜索区域;通过表观特征、深度特征提取网络分别提取目标区域、搜索区域的表观特征、深度特征;基于预设权重,分别对目标区域、搜索区域的表观特征、深度特征进行加权平均,得到各自的融合特征;根据目标区域和搜索区域的融合特征,通过相关滤波器得到目标的响应图;将响应图的峰值对应的位置作为第t帧的目标位置。本发明提取目标场景的深度信息,提高了目标跟踪的精度。
-
公开(公告)号:CN113628245A
公开(公告)日:2021-11-09
申请号:CN202110786110.5
申请日:2021-07-12
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种多目标跟踪方法、装置、电子设备和存储介质,所述方法包括:获取待检测的当前视频帧;基于目标检测网络,对所述当前视频帧进行多目标检测,得到检测结果;基于所述检测结果,对所述当前视频帧中的各目标进行目标跟踪;其中,所述目标检测网络包括若干组并行的目标检测分支和特征抽取分支;所述目标检测分支和特征抽取分支用于对所述当前视频帧的特征图中各个位置点进行处理。本发明提供的方法、装置、电子设备和存储介质,节省了目标检测和特征抽取的时间消耗,大大提升了目标跟踪的速度,从而能够实现多目标的实时性跟踪,并且增强了抽取特征的鉴别性,同时避免了不必要的人力消耗和资源消耗。
-
公开(公告)号:CN112991476B
公开(公告)日:2021-09-28
申请号:CN202110190015.9
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。
-
公开(公告)号:CN112991476A
公开(公告)日:2021-06-18
申请号:CN202110190015.9
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。
-
公开(公告)号:CN112990273A
公开(公告)日:2021-06-18
申请号:CN202110190037.5
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
IPC: G06K9/62 , G06K9/00 , G06N3/02 , G06N3/08 , G06F16/951
Abstract: 本发明属于图像识别领域,具体涉及了一种面向压缩域的视频敏感人物识别方法、系统、设备,旨在解决现有的敏感人物识别方法低效和浪费资源的问题。本发明包括:对待检测视频部分解码获取压缩域多模态信息,将压缩域多模态信息进行检测和校准,将校准后的压缩域人脸多模态信息通过训练好的多模态人脸识别网络获取多模态人脸特征,将多模态人脸特征与敏感人脸特征库进行比对,确认是否存在敏感人脸。其中,压缩域人脸多模态信息通过I分支、MV分支和Res分支分别提取不同的特征再进行多模态特征融合得到唯一的多模态人脸特征。本发明只需要进行部分解码就能完成特征提取,解决了现有技术低效和资源浪费的问题,同时保有较高的识别精度。
-
-
-
-
-
-
-
-
-