-
公开(公告)号:CN109082689B
公开(公告)日:2019-11-19
申请号:CN201810761659.7
申请日:2018-07-12
Applicant: 暨南大学
Abstract: 本发明公开了表面覆有纳米晶锌镀层的镁合金植入材料及其制备方法,所述材料包括镁合金植入材料,覆盖于镁合金植入材料之上的晶粒尺寸为1~10μm,厚度为1~10μm的粗晶锌预镀层;以及覆盖于粗晶锌预镀层之上的晶粒尺寸为30~100nm,厚度为10~100μm的纳米晶锌镀层。所述制备方法包括以下步骤:将镁合金植入材料基体加入锌预镀液中进行第一次电镀处理,水洗后直加入纳米锌电镀液中进行第二次电镀处理,再水洗。本发明制得的材料含有纳米锌,生物相容性好、成本低、操作简单、易于大规模生产;纳米晶锌镀层还可生物降解,因此,可通过对其晶粒尺寸和厚度的设计实现对镁合金植入材料服役时间的控制。
-
公开(公告)号:CN110344039A
公开(公告)日:2019-10-18
申请号:CN201910694929.1
申请日:2019-07-30
Applicant: 暨南大学
Abstract: 本发明属于导电复合材料技术领域,具体涉及一种在塑料表面制备银/纳米金刚石复合导电涂层的方法。所述方法主要包括以下步骤:(1)塑料碱洗处理;(2)塑料叠氮硅烷剂光接枝;(3)塑料分子自组装;(4)塑料敏化处理;(5)塑料表面化学喷涂Ag/NDs复合导电涂层。本发明的制备方法具有工艺简单、成本低、喷涂均匀等优点,采用分子接枝技术,提高了涂层与基体之间的界面结合强度,并且引入NDs作为增强相,复合涂层具有良好的耐腐蚀性能。
-
公开(公告)号:CN109082689A
公开(公告)日:2018-12-25
申请号:CN201810761659.7
申请日:2018-07-12
Applicant: 暨南大学
Abstract: 本发明公开了表面覆有纳米晶锌镀层的镁合金植入材料及其制备方法,所述材料包括镁合金植入材料,覆盖于镁合金植入材料之上的晶粒尺寸为1~10μm,厚度为1~10μm的粗晶锌预镀层;以及覆盖于粗晶锌预镀层之上的晶粒尺寸为30~100nm,厚度为10~100μm的纳米晶锌镀层。所述制备方法包括以下步骤:将镁合金植入材料基体加入锌预镀液中进行第一次电镀处理,水洗后直加入纳米锌电镀液中进行第二次电镀处理,再水洗。本发明制得的材料含有纳米锌,生物相容性好、成本低、操作简单、易于大规模生产;纳米晶锌镀层还可生物降解,因此,可通过对其晶粒尺寸和厚度的设计实现对镁合金植入材料服役时间的控制。
-
公开(公告)号:CN109082654A
公开(公告)日:2018-12-25
申请号:CN201810834195.8
申请日:2018-07-26
Applicant: 暨南大学
Abstract: 本发明属于纳米结构制备领域,公开了一种基于纳米晶锌镀层表面原位生长氧化锌纳米线薄膜的水热反应制备方法。该方法首先在基体表面电沉积纳米晶锌,而后以其作为模板,通过水热反应在纳米晶锌镀层表面原位生长氧化锌纳米线,所用水热反应液中起主要作用的为氢氧化钠;该工艺操作简单、成本低、能耗少、耗时短、且易于大面积制备;所制备的氧化锌纳米线薄膜与基体结合牢固,使用过成中便于回收;能够为基体镀层提供有效的腐蚀防护和光生阴极保护,可广泛应用于金属材料的腐蚀与防护;具有较强的光电活性和光吸收能力,在纳米传感器、纳米激光器、纳米发电机、发光二极管、太阳能电池和光催化等领域具有广阔的应用前景。
-
公开(公告)号:CN109053215A
公开(公告)日:2018-12-21
申请号:CN201811005163.3
申请日:2018-08-30
Applicant: 暨南大学
IPC: C04B38/06 , C04B35/10 , C04B35/622 , C04B35/626 , B22F1/02 , C22C38/50
CPC classification number: C04B38/068 , B22F1/02 , C04B35/10 , C04B35/622 , C04B35/62605 , C04B2235/3244 , C04B2235/3427 , C22C38/50 , C04B38/0074
Abstract: 本发明属于材料加工领域,公开了一种Fe‑Cr‑Ni‑Ti微粉包覆下蜂窝状ZTA陶瓷预制体及其制备方法和应用。Fe,Cr,Ni元素是铬系铸铁与高锰钢中的主要元素,其与Ti粉进行合金化处理后,有利于降低纯Ti粉的熔化温度,在1500±20℃高温液态浇铸过程中有利于形成熔融Ti,通过Ti与ZTA陶瓷中的氧发生扩散反应,实现结合强度较高的金属陶瓷结合界面。此外通过水玻璃与CO2反应生成具有一定连接强度的硅酸,促进了ZTA陶瓷颗粒间的粘结和预制体的定型,有利于预制体抗浇注的液态金属的冲刷。此外通过石蜡作为造孔剂,有利于预制体中的空洞分布均匀连通。因此可很好的应用于制备金属基复合材料。
-
公开(公告)号:CN109023203A
公开(公告)日:2018-12-18
申请号:CN201810932972.2
申请日:2018-08-16
Applicant: 暨南大学
Abstract: 本发明涉及一种稳定结晶态六铝酸盐热障涂层的制备方法。所述制备方法为:将Ni或Co基高温合金采用刚玉砂喷砂;采用超音速火焰喷涂或低压等离子喷涂在高温合金表面沉积粘结层;采用大气等离子喷涂在粘结层表面制备稳定结晶态六铝酸盐热障涂层。本发明直接喷涂沉积的六铝酸盐热障涂层具有很好的高温下相稳定性,1200‑1600℃高温作用下,涂层显微组织变化缓慢,烧结速率低,力学与热物理性能具有较好的长时间稳定性,抗热冲击循环性能优异;本发明有利于在航空及路基燃气轮机不同尺寸高温部件上直接喷涂稳定结晶态六铝酸盐热障涂层,不需经过后续热处理,提高燃气轮机的工作温度,燃油效率,延长服役寿命。
-
公开(公告)号:CN108871990A
公开(公告)日:2018-11-23
申请号:CN201810831786.X
申请日:2018-07-26
Applicant: 暨南大学
IPC: G01N3/56
Abstract: 一种可用于不同温度和湿度下的腐蚀三体磨粒磨损试验机,腐蚀磨损槽包括内箱和外箱,内箱设于外箱内,内箱的顶部固定于外箱的顶部,内箱、外箱的顶部设有对齐的开口,内箱外壁和外箱内壁之间填充流体介质;主轴安装于内箱和外箱的同一侧,主轴外端伸出外箱的侧壁并和驱动装置相连接,下试样的上方安装上试样;温度测控装置包括自动控温加热器、加热管和控温管,加热管设于外箱内的流体介质中,控温管设于内箱内填充的磨料中,加热管和控温管均与自动控温加热器连接。本发明具有准确检测材料的抗腐蚀磨粒磨损性能、操作方便、成本低廉等优点。本发明属于磨损检测技术领域。
-
公开(公告)号:CN107099697B
公开(公告)日:2018-07-13
申请号:CN201710363150.2
申请日:2017-05-22
Applicant: 暨南大学
IPC: C22C16/00 , C22C1/04 , A61L31/14 , A61L31/02 , A61L29/14 , A61L29/02 , A61L27/50 , A61L27/06 , G02C5/00 , A41C3/12 , A63B53/04
Abstract: 本发明公开了一种无镍超弹性钛基形状记忆合金及其制备和应用。该无镍超弹性钛基形状记忆合金包含以下按质量百分比计的组分:Zr为57~63%,Mo为2~8%,Mn为1.5~2.4%,余量为Ti以及不可避免的杂质。本发明的无镍超弹性钛基形状记忆合金具有高可恢复应变、低模量、高强度的特点,且耐磨性能好,可直接制成各种异形器件并可在工业上大规模生产,适用于生物医用材料领域的人体硬组织修复与替代,还可以应用于工业制品领域。
-
公开(公告)号:CN107478528A
公开(公告)日:2017-12-15
申请号:CN201710590205.3
申请日:2017-07-19
Applicant: 暨南大学
CPC classification number: G01N3/567 , G01N17/006 , G01N17/02
Abstract: 本发明公开了一种可用于腐蚀磨损的测试方法,步骤如下:采用测定惰性电极的局部阴极反应极化曲线和腐蚀电极的自腐蚀电位Ecorr相结合的方法求得金属腐蚀电流ik;求取金属腐蚀电流密度icorr;根据法拉第定律换算出腐蚀失重率Wcorr。本发明针对存在磨损、腐蚀工况的动态腐蚀磨损寿命测试,当切削犁沟和冲击腐蚀磨损环境导致的表面脆性剥落是有腐蚀介质的耐磨件失效的主要原因时,提出了一种模拟腐蚀磨损服役工况的试验方法,解决并测定了金属材料在腐蚀介质中腐蚀磨损总失重中的测量,该方法可用于动态腐蚀磨损中电化学腐蚀磨损的测量,有效说明磨损过程中的腐蚀定量研究。
-
公开(公告)号:CN107300508A
公开(公告)日:2017-10-27
申请号:CN201710591771.6
申请日:2017-07-19
Applicant: 暨南大学
Abstract: 本发明涉及一种金属材料耐冲击腐蚀磨损的试验机,包括实验环境模拟部分和电化学微机测控部分,实验环境模拟部分包括冲锤、主轴和腐蚀磨损槽,主轴的一端连接驱动装置,主轴的另外一端伸入腐蚀磨损槽内,伸入腐蚀磨损槽内的主轴套接有环状的研究电极,研究电极随主轴旋转,研究电极与主轴绝缘,冲锤设置于研究电极的上部,冲锤下部固接有上试样,结合矿山、机械等原料车间球磨机衬板的服役工况,在冲击磨损试验机上装备电化学测量和控制系统,使新试验机既能较确切地模拟球磨机衬板的冲击腐蚀磨损状况,又能较科学地开展金属材料冲击磨损与腐蚀交互作用的研究,试验机设计合理、运行平稳、操作简单且具有良好的重现性。
-
-
-
-
-
-
-
-
-