视频搜索方法、装置、设备和存储介质

    公开(公告)号:CN115422399A

    公开(公告)日:2022-12-02

    申请号:CN202210869119.7

    申请日:2022-07-21

    Abstract: 本发明实施例提供一种视频搜索方法、装置、设备和存储介质,该方法包括:获取用户输入的搜索信息;根据搜索信息,从预设的多模态知识图谱中得到与搜索信息相关联的多模态信息;多模态信息包括搜索信息的扩展文本信息和视频特征信息;根据扩展文本信息和视频特征信息,基于搜索引擎确定目标视频。本发明实施例的方法通过多模态知识图谱,将用户的搜索信息扩展为更多模态的信息输入,进而基于扩展后的搜索信息,也就可以获得更加全面、更加准确的视频搜索结果,提升了视频搜索结果的准确性和全面性,解决了视频搜索过程中的误检和漏检问题。

    轨道交通异常检测方法、装置及存储介质

    公开(公告)号:CN114550460B

    公开(公告)日:2022-07-12

    申请号:CN202210436887.3

    申请日:2022-04-25

    Abstract: 本申请提供一种轨道交通异常检测方法、装置及存储介质,其中方法包括:获取轨道交通设备中被监测传感器的时间序列数据;将所述时间序列数据输入至轨道交通异常检测模型,得到所述轨道交通异常检测模型输出的轨道交通异常检测结果;所述轨道交通异常检测模型包括可变形Transformer编码模块、全局特征提取模块和可变形Transformer解码模块,所述可变形Transformer编码模块用于提取所述时间序列数据的多尺度特征,所述全局特征提取模块用于提取所述时间序列数据的全局特征,所述可变形Transformer解码模块用于基于所述时间序列数据的多尺度特征和全局特征生成所述轨道交通异常检测结果。

    基于自监督的无参考图像质量评估方法及系统

    公开(公告)号:CN114358204A

    公开(公告)日:2022-04-15

    申请号:CN202210028835.2

    申请日:2022-01-11

    Abstract: 本发明属于图像质量评估领域,具体涉及了一种基于自监督的无参考图像质量评估方法及系统,旨在解决现有技术中由于训练数据不足而导致图像质量评估模型性能不佳的问题。本发明包括:构建共享编码器的先验知识学习子网络和图像质量评估子网络构成的自监督无参考图像质量评估模型;以图像复原任务作为图像质量评估任务的代理任务,进行先验知识学习子网络的预训练;通过先验知识学习子网络和所述图像质量评估子网络的解码器之间设置的知识迁移通道进行知识迁移;在图像质量评估任务上进行模型微调训练;通过训练好的模型进行无参考图像的质量评估。本发明模型仅在较少的数据上进行训练就可以获得很好的性能,训练效率高,图像质量评估的准确性高。

    一种伪造图像的识别方法、装置及设备

    公开(公告)号:CN114267089A

    公开(公告)日:2022-04-01

    申请号:CN202210203248.2

    申请日:2022-03-03

    Abstract: 本发明公开了一种伪造图像的识别方法、装置及设备,其中,所述方法包括:获取待检测图像;获取所述待检测图像的频谱掩模与所述待检测图像对应的身份空间约束,所述身份空间约束是指所述待检测图像与对应的预设参考正确图像的关联性权重分布图;根据所述频谱掩模对所述待检测图像进行分频,分别得到频谱的高频分量和低频分量;通过所述频谱的高频分量和低频分量与所述身份空间约束,分别得到高频分量的伪造概率和低频分量的伪造概率;合并所述高频分量的伪造概率和所述低频分量的伪造概率,得到最终伪造概率。通过上述方式,本发明提高了识别系统对于不同造假技术的泛化能力,增强了识别器的性能。

    目标对象的检测方法、装置、电子设备及存储介质

    公开(公告)号:CN113870254A

    公开(公告)日:2021-12-31

    申请号:CN202111440333.2

    申请日:2021-11-30

    Abstract: 本发明实施例公开了一种目标对象的检测方法、装置、电子设备及存储介质。该方法包括:根据待检测图像生成第一图像和第二图像,第一图像和第二图像的尺寸不同,第一图像和第二图像中的至少一个图像由待检测图像等比缩放得到,采用第一子模型检测第一图像,分别得到至少一类目标对像的第一子特征,以及采用第二子模型检测第二图像,分别得到至少一类目标对像的第二子特征,第一子模型与第二子模型是预训练的检测模型中相同的子模型,分别融合各类目标对像的第一子特征和第二子特征得到相应类的目标对像在待检测图像中的特征,实现了对待检测图像的整体轮廓和目标对象的同时检测,从而提高了目标对象检测方法检测的性能。

    基于多线索融合的暴恐音视频识别方法及装置

    公开(公告)号:CN108921002B

    公开(公告)日:2021-10-08

    申请号:CN201810367115.2

    申请日:2018-04-23

    Abstract: 本发明涉及计算机视频分类领域,提出了一种基于多线索融合的暴恐音视频识别方法,旨在解决音视频识别中,单一媒体模态分析音视频造成的大量误检和漏检问题。该方法包括:对用于进行暴恐识别的待检测音视频进行分割,提取音频帧序列和视频帧序列;按照预先指定的检测顺序检测所述音频帧序列和视频帧序列中是否包含暴恐信息;如果所述音频帧序列和/或视频序帧列包含暴恐信息,确定所述待检测音视频为暴恐音视频。本发明基于多个线索对音视频进行分级检测,能够快速、准确的从大量的音视频中识别出暴恐视频。

    基于图学习的小样本图像识别方法及系统

    公开(公告)号:CN111598167A

    公开(公告)日:2020-08-28

    申请号:CN202010418929.1

    申请日:2020-05-18

    Abstract: 本发明涉及一种基于图学习的小样本图像识别方法及系统,所述图像识别方法包括:获取源域样本图像数据集;以各样本图像作为节点,建立无向带权图;基于特征生成模型提取各样本图像的基础特征向量;对各节点之间执行信息的传递和聚合,得到优化特征向量;基于优化特征向量,建立图像识别模型;根据所述优化特征向量,建立对比损失函数;采用随机梯度下降方法优化图像识别模型的参数直到对比损失函数收敛,以确定面向小样本图像的识别模型;根据面向小样本图像的识别模型,确定待测样本图像的所属类别。通过学习出来的识别模型在小样本场景下可以放大异类样本的类间差异,缩小同类样本的类内差异,极大提升了小样本识别的准确率。

    基于深度学习的端到端的视频拷贝检测方法及装置

    公开(公告)号:CN108664902B

    公开(公告)日:2020-08-25

    申请号:CN201810367098.2

    申请日:2018-04-23

    Abstract: 本发明涉及视频分类领域,提出了一种基于深度学习的端到端的视频拷贝检测方法,旨在解决在视频拷贝检测中,两段视频中存在多处拷贝片段的检测困难,及无法准确定位拷贝视频片段的位置等问题。该方法的具体实施方式包括:对用于进行视频拷贝检测的两段待检测视频进行镜头分割以选取关键帧;利用预先构建的拷贝关系识别模型对所选取出的多个关键帧进行识别,确定各关键帧之间的拷贝关系;根据所得到的各关键帧之间的拷贝关系,构建两段上述待检测视频全部关键帧的贝关系矩阵;将该拷贝关系矩阵作为预先构建的定位识别模型的输入,定位两段所述待检测视中含有拷贝关系的片段。本发明能够快捷、高效地检测出两段视频中存在的多处拷贝关系的视频片段。

Patent Agency Ranking