-
公开(公告)号:CN118410403A
公开(公告)日:2024-07-30
申请号:CN202410654244.5
申请日:2024-05-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/241 , G06F40/30 , G06F16/36 , G06N5/025 , G06N3/042 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本公开涉及互联网信息处理技术领域,尤其涉及受雇网络写手的识别方法、装置、计算机设备及存储介质;方法包括:在获取到网络用户和各网络用户之间的关联关系后,以网络用户为节点,以关联关系为边构建了第一知识图谱,并将第一知识图谱输入至预训练的图神经网络模型中,最终得到各网络用户分别对应的类别标签,完成对网络用户的识别;在利用图神经网络模型对各网络节点进行识别时,将网络节点之间的关联关系以及与各网络节点相邻的节点信息也考虑进去,使得最终得到的类别标签具有更高的准确性,相较于当前仅根据用户信息对网络用户进行识别的方式,根据本方案识别方法得到的识别结果具有更强的说服力。
-
公开(公告)号:CN116992300A
公开(公告)日:2023-11-03
申请号:CN202310538489.7
申请日:2023-05-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/22 , G06F16/9536 , G06F16/901 , G06Q50/00
Abstract: 本公开涉及一种可解释性的社交机器人检测方法、装置、设备及存储介质。本公开通过获取社交图中各用户节点的节点特征向量以及不同用户节点之间构成的边的权重,针对待解释节点,通过领域聚合得到待解释节点的嵌入向量,进而通过社交机器人检测模型对待解释节点的嵌入向量进行处理,以预测待解释节点为社交机器人的第一概率;从而基于第一概率,可以确定社交图中任一用户节点对待解释节点的预测结果的节点贡献度,表示任一用户节点对于待解释节点预测结果的影响程度,并且可以确定待解释节点的嵌入向量中的任一特征对待解释节点的预测结果的特征贡献度,表示任一特征对于待解释节点预测结果的影响程度,解决社交机器人检测的解释性差的问题。
-
公开(公告)号:CN111581370B
公开(公告)日:2023-06-23
申请号:CN202010310036.5
申请日:2020-04-20
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/335 , G06F16/951 , G06F16/9536 , G06F40/242 , G06Q10/0637 , G06Q50/00
Abstract: 本发明公开了一种综合多通道数据来源的网络舆情热度评估方法,包括:步骤一、收集各通道的流数据;步骤二、量化流数据对于目标事件的敏感值和情绪标签;步骤三、基于敏感度和影响力量化得到主体指标值;步骤四、基于敏感消息数、各类情绪标签对应的消息数,量化得到内容指标值;步骤五、基于每日的消息数、用户数、群组数,量化得到传播指标值;步骤六、基于主体指标值、内容指标值、传播指标值,量化得到各通道的综合热度值,并计算得到目标事件当日的总热度值。本方法建立了普适的网络舆情热度评估指标体系,评估结果更准确全面。本发明还公开了一种综合多通道数据来源的网络舆情热度评估装置,本装置对网络舆情热度的评估更准确全面。
-
公开(公告)号:CN116186191A
公开(公告)日:2023-05-30
申请号:CN202210320305.5
申请日:2022-03-29
Applicant: 国家计算机网络与信息安全管理中心 , 北京理工大学
Abstract: 本发明涉及基于多维信息的任务匹配方法,属于基于大数据智能分析与挖掘技术领域。本发明是结合文本处理、机器学习方法、线性模型、动态规划等方法对相应文本进行处理,从而对文本所含“价值”进行分析,并借助大数据的手段将人工主观文本分析变为自动化完成,提高系统找到匹配结果的效率。本发明采用多种大数据分析的思想和多路召回的思想,对于同一任务会召回多个表单,每一个表单进行同样的操作,设置不同的权重,最后多路交集,从而可以取到更加准确的筛选结果,大大提高了工作效率。
-
公开(公告)号:CN115345181A
公开(公告)日:2022-11-15
申请号:CN202210786892.7
申请日:2022-07-04
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/58 , G06F16/36 , G06F40/211 , G06F40/295 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种神经机器翻译模型的训练方法、翻译方法及装置,所述训练方法包括:构建神经机器翻译模型;将双语平行句对中的源语言句子和目标语言句子,以及知识图谱中每个三元组中的头实体和尾实体进行细粒度切分,得到标准源语言句子序列、标准目标语言句子序列以及知识图谱中每个三元组中的标准头实体‑关系序列和标准尾实体序列;将其输入编解码模块中预测得到目标语言句子序列以及尾实体序列;基于标准目标语言句子序列和预测的目标语言句子序列之间的交叉熵,以及知识图谱中每个三元组中的标准尾实体序列与预测的尾实体序列之间的交叉熵,共同训练该模型。本发明能够有效融合细粒度知识推断,提升神经机器翻译对于实体的翻译质量。
-
公开(公告)号:CN115270717A
公开(公告)日:2022-11-01
申请号:CN202210764767.6
申请日:2022-06-29
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司
IPC: G06F40/126 , G06F40/284 , G06F40/30 , G06F16/35
Abstract: 本公开涉及一种立场检测方法、装置、设备及介质,其中该方法包括:获取文本中包含的词汇的语义编码和特征信息,特征信息包括词性信息;根据文本中包含的词语的排列顺序以及词性,生成至少一个预设句式结构的短语;根据文本中包含的词汇的语义编码生成短语的语义编码序列;基于短语的第一语义编码序列和预设的观点的第二语义编码序列,对短语和观点进行聚类;根据聚类结果确定文本中包含的观点,实现了对文本所包含词汇的特征信息的综合分析,从而能够准确判断文本的立场观点。
-
公开(公告)号:CN114881161A
公开(公告)日:2022-08-09
申请号:CN202210546540.4
申请日:2022-05-20
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种面向多社交网络平台的机器人检测方法,包括:获取社交网络平台的用户账号数据,将账号ID作为用户的唯一标识符,提取用户特征,朋友特征,网络特征,内容特征,情感特征,时序特征;构建高维的原始矩阵,通过显著性分析,得到低维的特征矩阵;采用聚类算法或分类算法实现划分,识别出正常用户账号与机器人账号。本发明还公开了一种面向多社交网络平台的机器人检测装置、电子设备及存储介质。本发明对境内外多个社交网络平台账号数据进行研究,通过特征表示、特征显著性分析、聚类或分类等算法进行社交机器人检测,识别出社交网络中的社交机器人账号,从而预警大规模社交机器人异常行为,进而维护社交网络安全。
-
公开(公告)号:CN113312478B
公开(公告)日:2022-07-19
申请号:CN202110445975.5
申请日:2021-04-25
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/35 , G06F40/289 , G06F40/30 , G06K9/62 , G06F40/216 , G06N5/02
Abstract: 本发明公开了基于阅读理解的观点挖掘方法,包括:构建领域情感观点知识库,其内包含领域情感观点词,每个领域情感观点词对应一个情感分类标签和一个立场分类标签;基于所述领域情感观点知识库和事件观点训练文本集,对预训练语言模型进行训练,获得情感预训练语言模型,所述情感预训练语言模型中嵌入有表示输入文本的情感和观点信息;从待抽取事件文本中抽取事件观点文本;将所述事件观点文本输入所述情感预训练语言模型中,并对其输出的内容进行编码、句子特征提取和分类,获得待抽取事件文本中观点的情感和立场;以及,基于阅读理解的观点挖掘装置。本发明具有使观点挖掘结果更加准确的优点。
-
公开(公告)号:CN108920479B
公开(公告)日:2022-06-17
申请号:CN201810337919.8
申请日:2018-04-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958 , G06Q10/06 , G06Q50/00
Abstract: 本发明公开了一种针对两微一端跨信源账号推荐方法,包括:将两微一端跨信源账号关联度衡量指标分为三级,包括多个一级关联度衡量指标,各个一级指标下分多个二级指标,以及各二级指标对应的各维度数据字段为三级指标;确定种子账号和多个目标账号;采集三级指标下的各维度数据,量化各个维度数据的相似度;基于用户关注度需求确定一级指标权重和一级指标下各个二级指标的权重;将所得各类三级关联度衡量指标下各个维度数据相似度与各自权重加权求和,获得各目标账号关联度指数,并将这些目标账号关联度指数倒序推荐。本发明所述推荐方法可跨信源进行账号推荐,且推荐结果精确合理。
-
公开(公告)号:CN108763319B
公开(公告)日:2022-02-08
申请号:CN201810396753.7
申请日:2018-04-28
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06N3/04 , G06Q50/00
Abstract: 本发明属于计算机技术领域,具体提供了一种融合用户行为和文本信息的社交机器人检测方法和系统。旨在解决现有技术手动选取特征、忽略社交媒体帖子之间的逻辑性和时序性以及忽略社交平台用户行为信息的问题,本发明的社交机器人的检测方法包括获取待检测社交媒体用户的历史网络数据和好友网络数据;基于上述数据得到用户文本特征向量、行为特征向量以及好友网络特征向量,并将其融合,得到待检测社交媒体用户的用户特征向量;对用户特征向量进行检测,输出检测结果。本发明的方法更加符合社交媒体自身的特性,从多个维度分析待检测社交媒体用户,提升了检测准确率。本发明的系统同样具有上述有益效果。
-
-
-
-
-
-
-
-
-