-
公开(公告)号:CN105675597B
公开(公告)日:2018-06-19
申请号:CN201610031944.4
申请日:2016-01-19
Applicant: 济南大学
Abstract: 本发明公开了一种三维比色和光电化学纸基设备的制备方法及其在过氧化氢检测中的应用。利用蜡打印技术在纸上制备疏水区域、亲水区域,通过激光切割机切割通道,采用丝网印刷的方法,在纸上印制相应的参比、对电极和工作电极,再对工作区域进行功能化以及前处理区储备液的滴加,进而癌细胞的固定;将制备好的纸芯片进行折叠,依次完成比色反应和光电化学反应。通过合理的设计纸芯片通道,首次实现了癌细胞中低含量的H2O2分子的高灵敏、可视化检测。
-
公开(公告)号:CN106018373B
公开(公告)日:2018-06-08
申请号:CN201610566988.7
申请日:2016-07-19
Applicant: 济南大学
IPC: C12Q1/68
Abstract: 本发明公开了一种三维金属增强荧光/比色双模纸芯片的制备及利用所述的荧光/比色双模传感器测定ATP的方法。利用蜡打印技术在纸芯片上制备疏水区域、亲水区域以及中空通道,通过激光切割机切割中空通道。在1工作区域生长金银纳米星,进而固定荧光信号物质,随后滴加荧光淬灭剂,通过荧光信号“关‑开”,从而实现ATP高灵敏的荧光测定。将制备好的纸芯片折叠,在反应区域滴加过氧化氢,从而实现ATP可视化比色测定。
-
公开(公告)号:CN105924478B
公开(公告)日:2018-05-29
申请号:CN201610346615.9
申请日:2016-05-24
Applicant: 济南大学
Abstract: 本发明公开了种三维纸基金属有机框架的制备方法,属于有机纳米材料的制备领域。本方法包括以下步骤:纸基底的选取‑设计纸基底疏水蜡批量打印图案‑打印电极‑生长纸基金属有机框架。本发明的特点在于选用纸作为基底材料,不仅储量丰厚,而且具有易于折叠、便于携带等特点。制备工艺简单,所得纸基金属有机框架很容易实现现场即时可视化检测,同时,为多功能化纸基电子器件的制备奠定很好的基础。
-
公开(公告)号:CN107819125A
公开(公告)日:2018-03-20
申请号:CN201711065336.6
申请日:2017-11-02
Applicant: 济南大学
IPC: H01M4/52 , H01M10/0525 , C01G51/04
CPC classification number: H01M4/523 , C01G51/04 , H01M10/0525
Abstract: 本发明属于无机材料的制备及应用领域,具体涉及一种稻草捆状四氧化三钴的制备方法及其在锂离子电池中的应用。该方法的具体步骤为:(1)将钴盐和醋酸溶解于N,N二甲基甲酰胺(DMF)中,搅拌,形成混合均匀溶液;(2)将步骤(1)得到的混合均匀溶液置于水热反应釜中密封,在150-200℃反应2-24h,自然冷却至室温。DMF洗涤,经离心分离出固体,真空干燥后,得到四氧化三钴前驱物;(3)将步骤(2)得到的前驱物在空气氛围中300-500℃煅烧,冷却至室温即可得到稻草捆状四氧化三钴。本发明制备方法简单、易于操作、重复性好,该方法制备得到的稻草捆状四氧化三钴均匀、纯度高,制备的四氧化三钴在锂离子电池电极材料领域有很好的应用前景。
-
公开(公告)号:CN107557832A
公开(公告)日:2018-01-09
申请号:CN201710750065.1
申请日:2017-08-28
Applicant: 济南大学
Abstract: 本发明公开了一种三维铂-n型氧化亚铜复合纳米纸的制备方法,首先利用原位生长法在纸纤维的表面包覆铂纳米粒子层,制备纸基铂电极,然后采用电位溶出分析法在纸基铂电极的功能区电沉积树枝状的n型氧化亚铜,获得三维铂-n型氧化亚铜复合纳米纸。基于贵金属铂对纸纤维的良好吸附能力,获得的纸基铂电极具有大的表面积和良好的导电性,有利于进一步功能化大量的树枝状的n型氧化亚铜。制备的三维铂-n型氧化亚铜复合纳米纸具有较强的可见光吸收能力,较高的光电转换效率,可以广泛地应用于光电化学传感、光催化和太阳能电池领域。
-
公开(公告)号:CN107237208A
公开(公告)日:2017-10-10
申请号:CN201710538071.0
申请日:2017-07-04
Applicant: 济南大学
IPC: D21H19/18 , D21H19/12 , D21H19/82 , D21H23/70 , D21H23/24 , D21H19/14 , D21H21/14 , C01G9/02 , C01B32/194
CPC classification number: Y02P20/135 , D21H19/18 , C01G9/02 , C01P2004/03 , C01P2004/16 , C01P2004/30 , C01P2006/40 , C01P2006/60 , D21H19/12 , D21H19/14 , D21H19/82 , D21H21/14 , D21H23/24 , D21H23/70
Abstract: 本发明公开了一种三维石墨烯‑氧化锌复合纳米纸的制备方法,该方法首先通过原位生长法在纸基底上包覆石墨烯纳米层,获得石墨烯纸,然后通过两步水热法在石墨烯纸上生长具有分层结构的氧化锌纳米棒‑氧化锌纳米颗粒,最后获得三维石墨烯‑氧化锌复合纳米纸。基于石墨烯的良好导电性和氧化锌独特的棒状结构,该复合纳米纸可以有效地加速电荷的转移,极大地提高光电转换效率。这种分层结构的氧化锌纳米棒‑氧化锌纳米颗粒具有较大的表面积,有利于功能化纳米材料和负载信号分子,可以广泛地应用于光电化学传感领域。
-
公开(公告)号:CN107064509A
公开(公告)日:2017-08-18
申请号:CN201710264783.8
申请日:2017-04-21
Applicant: 济南大学
IPC: G01N33/574 , G01N27/327 , G01N27/416 , B82Y30/00 , B82Y40/00 , B82Y5/00
CPC classification number: G01N33/57473 , B82Y5/00 , B82Y30/00 , B82Y40/00 , G01N27/3278 , G01N27/416 , G01N33/57484
Abstract: 本发明公开了一种检测癌胚抗原的光电化学免疫传感器的制备及应用研究。在掺杂氟的二氧化锡透明导电玻璃上生长三维分层结构的氧化锌纳米棒‑纳米片,利用其负载大量的锰掺杂的硫化镉量子点和识别癌胚抗原的适配体及与适配体杂交的标记有碲化镉/硒化镉核壳量子点的DNA探针,形成基于氧化锌的多元敏化结构,实现最初的信号放大;结合癌胚抗原特异性识别适配体使DNA探针解杂交脱离电极表面产生的减弱的敏化作用及癌胚抗原与适配体形成的共轭物自身的空间位阻效应,实现进一步的信号放大,进而实现对癌胚抗原的灵敏检测。
-
公开(公告)号:CN106946284A
公开(公告)日:2017-07-14
申请号:CN201710274962.X
申请日:2017-04-25
Applicant: 济南大学
CPC classification number: C01G9/02 , C01P2004/03 , C01P2004/61 , C03C17/23 , C03C2217/216 , C03C2217/71 , C03C2218/345
Abstract: 一种氧化铟锡(ITO)导电玻璃上种两端发散式哑铃型氧化锌制备方法,属于材料制备领域。本方法包括以下步骤基底清洗‑种子溶液涂覆‑前驱体溶液的配制‑ZnO的生长。本发明的优点选用透光率高,导电性好的ITO导电玻璃作为基底,制备过程无有机试剂,对环境无污染,操作过程简单,成本低,反应条件易实现。本发明只需经过一次生长就可以形成表面积大,两端发散式的氧化锌,为基于氧化铟锡玻璃上ZnO电子器件的发展打下基础。
-
公开(公告)号:CN104733773B
公开(公告)日:2017-03-15
申请号:CN201510143313.7
申请日:2015-03-30
Applicant: 济南大学
Abstract: 本发明公开了一种中空通道纸基折叠电池。该电池由纸基中空通道、电解质、电极等部分组成。制备过程包括以下步骤:设计中空通道整体布局及疏水图案;批量打印;融蜡成型;制备中空通道;粘贴电极;构建连接线;裁剪折叠;电池组装;注入电解质;输出端得到电压。本发明采用原料丰富、廉价、易折叠、可降解的纸基材作为基底材料,制备的电池柔韧灵活,携带方便,可以剪裁、弯曲、折叠,对环境友好,制备方法简单。与普通的纽扣电池相比,它成本极低、材料环保,可作为日用垃圾处理,尺寸和形状灵活,易于与应用进行集成。
-
公开(公告)号:CN106353287A
公开(公告)日:2017-01-25
申请号:CN201610721320.5
申请日:2016-08-25
Applicant: 济南大学
CPC classification number: G01N21/64 , G01N21/25 , G01N21/6428 , G01N21/78
Abstract: 本发明公开了一种比色/荧光纸芯片的制备方法及测定细胞内的过氧化氢的方法。利用蜡打印技术在纸芯片上制备疏水区域、亲水区域以及中空通道,通过激光切割机切割中空通道。在工作区域2上生长二氧化铈,利用二氧化铈的类酶性质,与过氧化氢变成橘黄色,实现了可视化的比色检测。又因过氧化氢可以替代吸附在二氧化铈上的DNA,通过荧光信号“关-开”,从而实现高灵敏的荧光测定。
-
-
-
-
-
-
-
-
-