-
公开(公告)号:CN113510238B
公开(公告)日:2022-03-04
申请号:CN202110792893.8
申请日:2021-07-14
Applicant: 中南大学
IPC: B22F1/12 , B22F1/18 , B22F1/16 , B22F1/065 , B22F10/20 , B22F5/00 , B33Y70/10 , C22C38/54 , C22C38/34 , C22C38/02 , C22C19/05 , C22C30/00
Abstract: 本发明公开了一种基于激光熔覆制备高硬度高耐磨刀模的复合材料,包括:微米级球形粉末、纳米级陶瓷粉末和微米级钨包金刚石粉末,所述微米级球形粉末为铁基合金粉末或者镍基合金粉末,所述纳米级陶瓷粉末为碳化物陶瓷粉末,所述纳米级陶瓷粉末包覆在所述微米级球形粉末表面;所述微米级钨包金刚石粉末为纳米级钨粉通过化学镀的方法包覆在金刚石表面制成的钨包金刚石粉末;三种组分按照预定配比制得铁基‑纳米碳化物参钨包金刚石体系或者镍基‑纳米碳化物参钨包金刚石体系的所述复合材料。另外还公开了该复合材料的制备方法。本发明基于激光熔覆制备高硬度高耐磨刀模的复合材料是由纳米陶瓷粉末包覆金属球形粉末和纳米钨包覆金刚石粉末混合而成,不仅增强了耐磨性性,而且提高了硬度,使得刀模可以长期使用。
-
公开(公告)号:CN113948012A
公开(公告)日:2022-01-18
申请号:CN202111208178.1
申请日:2021-10-18
Applicant: 中南大学
Abstract: 本发明公开了一种Micro LED单色显示屏,包括:上挡板、元件组合板、循环水冷系统和下挡板,上挡板、元件组合板、循环水冷系统和下挡板由上至下依次叠加组装成单色显示屏;其中,元件组合板包括由上至下依次叠加设置的基底、发光层、发射层、导电层和Micro LED驱动IC芯片,Micro LED驱动IC芯片与发光层、发射层以及导电层通过导线相互连接;元件组合板还分别设置有正负极引线。该显示屏集合了LED的优良特性,大大的延长了屏的使用寿命,进一步提高了光固化打印机的工作时长,解决了在光固化打印过程中因长时间紫外照射而造成的屏的损害问题,大大的节约了成本。
-
公开(公告)号:CN113870251A
公开(公告)日:2021-12-31
申请号:CN202111217090.6
申请日:2021-10-19
Applicant: 中南大学湘雅二医院
Abstract: 本发明涉及一种放疗精准定位的心脏图像处理方法,该方法包括获取心脏图像,将室间隔域根据第一边界线和第二边界线的曲率划分为若干待作用区域,将若干待作用区域的宽度分别与标准室间隔宽度进行比较,获取比较结果;根据比较结果定位放疗的作用位置,并将作用位置进行标注,并根据待作用区域的宽度超出标准室间隔的差值宽度标准作用时间和作用强度;根据血液流速与预设的标准流速的关系调整标注的作用时间和作业强度。通过获取心脏图像,并确定心脏图像上的室间隔的位置,并根据室间隔中的待作用区域的实际宽度与标准宽度,在心脏图像上予以标注,需要进行标注的信息包括作用位置、作用时间和作用强度,以进行对应的放疗。
-
公开(公告)号:CN113814395A
公开(公告)日:2021-12-21
申请号:CN202111170217.3
申请日:2021-10-08
Applicant: 中南大学湘雅医院
Abstract: 本发明提供一种金属锡强化纳米TiO2光固化3D打印陶瓷浆料,包括有机混合树脂相和分散于所述有机混合树脂相内的陶瓷粉末增强相;其中有机混合树脂相包括按体积百分比计的如下成分:单体8‑20%、活性稀释剂5‑15%、低聚物50‑70%、助剂8‑12%、光引发剂5‑12%;所述陶瓷粉末增强相包括按重量百分比计的如下成分:纳米TiO2粉末70‑90%、纳米锡金属粉末10‑30%;且每1mL有机混合树脂相中陶瓷粉末增强相的加量为0.2‑0.25g。本发明提供的金属锡强化纳米TiO2光固化3D打印陶瓷浆料,降低了陶瓷材料的烧结温度,增强了陶瓷粉末基体结构的稳定性,且保证了经光固化3D打印出的坯体的精度及成型效果。本发明还提供一种金属锡强化纳米TiO2光固化3D打印陶瓷浆料的制备方法。
-
公开(公告)号:CN113118459A
公开(公告)日:2021-07-16
申请号:CN202110424027.3
申请日:2021-04-20
Applicant: 中南大学
IPC: B22F10/28 , B22F10/66 , B22F5/00 , B22F9/04 , C22C9/01 , C22C9/02 , C22C21/02 , C22C21/10 , C22C21/16 , C22C21/18 , C22C23/02 , C22C23/04 , C22C26/00 , C22C32/00 , C23C24/10 , B33Y10/00 , B33Y70/10 , B33Y80/00
Abstract: 本发明公开了一种低温激光熔覆制备刀锋的方法,包括以下步骤:S1,根据刀锋预设的性能指标,选择制备所述刀锋的原材料及配比,采用高能球磨机将预定配比的各原材料球磨得到金属基复合粉末;S2,根据刀锋预设的性能指标以及规格要求,选择适应类型和尺寸的基板;S3,根据刀锋的设计图纸,利用三维建模软件设计好刀锋模型;S4,将S3中设计好的刀锋模型导入到激光熔覆设备中,并按照预设要求设定各项参数,然后进行打印,在所述基板上制备刀锋初坯;S5,采用数控机床对S4中得到的刀锋初坯进行精加工,即得到刀锋;以及公开了一种3D打印用金属基复合粉末。本发明在制备刀锋过程中,采用低温激光熔覆,避免在熔覆过程中增强颗粒的溶解导致刀锋力学性能下降,基板过热导致氧化、变形等问题。本发明提出的方法,不仅是一种极具发展潜力和应用前景的制备刀锋的工艺,而且为新型制造技术对传统制造工艺变革提供了新的动力。
-
公开(公告)号:CN113118457A
公开(公告)日:2021-07-16
申请号:CN202110417061.8
申请日:2021-04-19
Applicant: 中南大学
Abstract: 本发明公开了一种激光熔覆氮化制备高硬度、高强度刀模的方法,包括以下步骤:S1,根据所制备的刀模设计图纸,利用专业的制图软件绘制刀模三维模型,保存为三维文件格式;S2,将S1中保存的文件载入切片软件,设置激光熔覆设备的激光功率、打印层厚、激光扫描速度以及送粉路参数,并生成相应的G代码;S3,将S2中生成的G代码导入激光熔覆设备上位机中;S4,将成形基体放置到成形平台,根据预设要求调节光斑大小、送粉量、载气气流量和保护气气流量;S5,打印刀模初胚;S6,对S5中打印的刀模初胚进行精加工,切削出刀锋,即可制备成高硬度、高强度刀模。通过采用激光束熔融金属粉末使其沉积成形并采用氮气保护,氮气渗入金属表面,从而提高了金属表面的强度。
-
公开(公告)号:CN112946950A
公开(公告)日:2021-06-11
申请号:CN202110395452.4
申请日:2021-04-13
Applicant: 中南大学
IPC: G02F1/1335 , G02F1/1337 , B29C64/30 , B33Y40/00
Abstract: 本发明公开了一种紫外屏及光固化3D打印机,紫外屏包括玻璃基板、配向膜、TFT、偏光片和液晶;上、下两块玻璃基板的一侧分别覆盖有配向膜,且至少在一块玻璃基板的另一侧设置依次贴附有TFT和偏光片;上、下两块玻璃基板以配向膜侧正对平行布置夹持液晶。通过优化设计液晶显示屏的内部构造来实现在紫外光及可见光范围内具有高的透过率,从而改变普通液晶显示屏的紫外透光的光学性能,其紫外透过率可达到30%以上,有利于提高光固化打印机在打印过程中产品的成功率,也进一步缩短了打印的工作周期,降低成本。相较于传统液晶屏,没有背光模组及框架等复杂结构,极大的降低屏的成本、优化屏的工艺流程,大大提高屏的紫外透过率。
-
公开(公告)号:CN112488102A
公开(公告)日:2021-03-12
申请号:CN202011368629.3
申请日:2020-11-30
Applicant: 中南大学
Abstract: 本发明公开了一种基于多视图学习和深度监督自编码器的医学影像分类方法及装置,所述方法包括以下步骤:步骤1、对医学影像感兴趣区域进行小波分解,获取多频子带;步骤2、将每个子带定义为一个视图,对每个视图定量提取影像组学特征,进而得到多视图特征;步骤3、构建基于多视图特征学习的深度监督自编码器的分类网络,基于影像样本的形态学多视图特征向量及其分类标签对分类网络进行训练,得到训练好的分类模型;步骤4、基于训练好的分类模型对未知分类标签的影像进行分类。本发明能够提高医学影像的分类准确度。
-
公开(公告)号:CN109318476B
公开(公告)日:2021-03-09
申请号:CN201811190117.5
申请日:2018-10-12
Applicant: 中南大学
IPC: B29C64/112 , B29C64/124 , B29C64/30 , B33Y30/00 , B33Y80/00
Abstract: 本发明公开了一种无支撑彩色三维实体模型制造方法,将离型剂和水性颜料加入3D打印机中,其中一喷头中装载离型剂,其余喷头中装载色调不同的水性颜料;通过3D打印机的打印喷头将离型剂注入到可固化树脂或石蜡中,注入的离型剂按照产品三维数字模型的外形轮廓层层打印分隔出模型的外部形态;注入的水性颜料对三维数字模型内部需要着色的部位进行相应着色;将可固化树脂或石蜡进行固化,将离型剂外部的可固化树脂或石蜡剥离,离型剂包裹的部分即为得到的三维模型成品,可固化树脂或石蜡的粘度为100‑500000Pa·s。本发明能够完成无支撑彩色三维实体模型制造的同时,不需要添加任何支撑体,而是通过可固化树脂或石蜡材料来维持原始结构。
-
公开(公告)号:CN111997616A
公开(公告)日:2020-11-27
申请号:CN202010961525.7
申请日:2020-09-14
Applicant: 中南大学 , 广西中金岭南矿业有限责任公司
Abstract: 本发明公开了一种采用大断面连续回收采场残留顶底柱的采矿方法。该方法依据薄板理论,超前支护理论对胶结充填体下顶底柱回收的采场结构参数进行设计,并形成了完整的采矿工艺,解决了传统进路式小断面回采能力低、分层式回采安全性较差的缺点。本发明通过超强注浆和超前锚杆对保护顶板上部胶结充填体进行超前加固,使其形成为高强度加固假顶,避免了留设过厚的矿石顶板,在提高回收率的同时又充分保证了回采的安全。本发明包括采场布置、采场结构参数设计、加固假顶设计,加固假顶施工工艺以及采切、回采、充填等工艺。本发明具有生产能力大、回收率高、安全性好等特点。
-
-
-
-
-
-
-
-
-