基于深度学习的图像去噪方法、装置、设备和存储介质

    公开(公告)号:CN109658344A

    公开(公告)日:2019-04-19

    申请号:CN201811338660.5

    申请日:2018-11-12

    Abstract: 本发明公开了一种基于深度学习的图像去噪方法,搭建神经网络图像去噪模型,选取训练集,并设置训练参数;根据神经网络图像去噪模型及其训练参数,以最小平方差函数作为损失函数,应用在模型训练过程,形成深度学习的神经网络图像去噪模型;将待处理的图像输入到所述神经网络图像去噪模型,输出去噪后的无噪声图像,根据噪声的分布程度引入相应的权重到网络模型中,为了防止梯度消失或者梯度爆炸的情况,引入残差学习过程,并采用LN横向规范化形式将经过卷积层得到特征进行归一化来统一数据的分布,使数据保存在相同的范围,并加快网络收敛速度,可广泛适用于高斯噪声、真实图像噪声、超分辨等低水平视觉的图像任务处理过程。

Patent Agency Ranking