一种制备多孔金属铁的方法

    公开(公告)号:CN104593659B

    公开(公告)日:2017-01-18

    申请号:CN201410784773.3

    申请日:2014-12-17

    Abstract: 本发明涉及一种制备多孔金属铁的方法,属于过渡金属多孔材料制备技术领域。本发明特征在于将硝酸铁、还原剂配成溶液;通过液相中发生的剧烈氧化还原反应放出大量气体来获得蓬松的多孔前驱体;在还原气氛中,经过一定温度和时间的还原反应,将多孔前驱体骨架还原成金属铁,同时通过高温烧结将骨架固结从而原位保留下多孔前驱体的孔隙结构,最终制备出孔隙结构良好,尺寸可调,分布均匀的多孔金属铁。本发明设备简单,工艺流程短,效率高,成本低,适合规模化工业生产。

    一种生产纳米碳化钒粉末的方法

    公开(公告)号:CN104495846B

    公开(公告)日:2016-08-24

    申请号:CN201410785489.8

    申请日:2014-12-17

    Abstract: 本发明涉及一种生产纳米碳化钒粉末的方法,属于陶瓷粉末制备技术领域。工艺过程为:(1)将钒源、碳源和辅助剂按照一定比例配成溶液;(2)将溶液加热,使溶液挥发、浓缩后分解,得到含有钒源和碳源前驱体粉末;(3)将前驱体粉末于700?1300℃温度范围内,在一定气氛下反应1?5小时。本发明工艺简单,成本低,易于产业化,得到的碳化钒粉末颗粒粒度小于50nm,分散性较好。

    一种高导热氮化铝陶瓷的制备方法

    公开(公告)号:CN104973865A

    公开(公告)日:2015-10-14

    申请号:CN201510276618.5

    申请日:2015-05-26

    Abstract: 本发明属于陶瓷材料制备技术领域,涉及一种高导热氮化铝陶瓷的制备方法。本发明以氮化铝粉体为基本原料,采用稀土金属氟化物EuF3、LaF3、SmF3或其混合物为烧结助剂,烧结助剂稀土氟化物的加入量为氮化铝粉末质量的2%-8%,经湿磨混合、干燥、成形、脱脂、烧结形成氮化铝陶瓷,所得氮化铝陶瓷热导率大于200W/m.K,抗弯强度大于320MPa,晶粒度细小的氮化铝陶瓷;本发明具有工艺简单,产品性能好,生产成本低等特点。

    一种制备难熔泡沫金属钨的方法

    公开(公告)号:CN103695691B

    公开(公告)日:2015-10-07

    申请号:CN201310741908.3

    申请日:2013-12-27

    Abstract: 一种制备难熔泡沫金属钨的方法,属于多孔高温合金制备技术领域。首先采用溶液法合成制备氧化物前驱体,接着将氧化钨前驱物在氢气中进行选择还原得到晶粒为纳米级的泡沫金属钨,然后将得到的泡沫金属钨在氢气中不同温度下进行烧结,最终得到孔隙率、孔径、粒度大小以及强度不一的泡沫金属钨。该发明解决了难熔金属获得超高孔隙率的问题,具有孔隙率和孔径的可设计性强、低成本、原料粉末利用率高、高温强度高,适合在耐高温、耐腐蚀和抗氧化的条件下使用等优点。

    一种铜修饰紫钨光催化剂的制备方法

    公开(公告)号:CN104785275A

    公开(公告)日:2015-07-22

    申请号:CN201510129107.0

    申请日:2015-03-23

    Abstract: 本发明公开了一种铜修饰纳米紫钨光催化剂材料。掺杂合适浓度的铜,确保铜离子进入紫钨的晶格中,引入缺陷位置,从而影响电子和空穴的复合,在合适的浓度下,达到最优的催化效果。同时本发明公开了催化剂材料的制备方法,采用溶液法一步合成铜掺杂紫钨粉末,反应时间短,反应引发温度低,得到纳米晶催化剂粉末,直径为30~200nm,长度为1~3μm。该发明解决了利用适当掺杂引入缺陷的方法来显著提高光催化性能的问题。制备的光催化粉末晶粒细小,低成本、原料粉末利用率高、光催化效率高等优点。

    一种铝掺杂氧化锌纳米粉体的制备方法

    公开(公告)号:CN104741069A

    公开(公告)日:2015-07-01

    申请号:CN201510128790.6

    申请日:2015-03-23

    Abstract: 本发明涉及一种生产铝掺杂氧化锌纳米粉体的方法,属于纳米材料制备技术领域。工艺过程为:(1)将硝酸锌、硝酸铝、胺类有机物和辅助剂按照一定比例配成溶液;(2)将溶液加热,溶液挥发、浓缩后发生反应,得到前驱物粉末;(3)将前驱物粉末于400-800℃温度范围内,在空气下反应1-5小时,得到铝掺杂氧化锌纳米粉体(4)本发明工艺简单,成本低,易于产业化,制备的铝掺杂氧化锌纳米粉体晶粒细小,分散性好,粒度可控,具有介孔结构,可用于吸附有机污染物等领域。

    一种氮化铝/氮化硼复合陶瓷粉末的制备方法

    公开(公告)号:CN104725049A

    公开(公告)日:2015-06-24

    申请号:CN201510128024.X

    申请日:2015-03-23

    Abstract: 本发明公开了一种氮化铝/氮化硼复合陶瓷粉末的制备方法,属于陶瓷粉末制备技术领域。主要步骤为:采用铝源、硼源、胺类有机物、水溶性碳源和辅助剂为原料,按照一定比例配成溶液,加热并搅拌,溶液挥发、浓缩后发生反应,得到前驱体粉末;将前驱体粉末于1300-1700℃在流动的氮气气氛下反应2-4小时;将反应后的粉末在500-650℃的空气中加热1-3小时,得到氮化铝/氮化硼复合陶瓷粉末。本发明有利于在较低的反应温度条件下合成高纯度、高分散、细粒度的氮化铝/氮化硼复合陶瓷粉末,操作简单,成本低,易于产业化生产。

    一种纳米氮化铝粉末的制备方法

    公开(公告)号:CN104724685A

    公开(公告)日:2015-06-24

    申请号:CN201510128002.3

    申请日:2015-03-23

    Abstract: 本发明公开了一种纳米氮化铝粉末的制备方法,属于纳米材料制备技术领域。本发明采用铝源、水溶性碳源和辅助剂为原料,按照一定比例配制成溶液,将溶液加热,溶液挥发、浓缩后发生分解,得到前驱体粉末;将前驱体粉末于1200-1800℃在一定气氛下反应1-5小时;将反应后的粉末在500-800℃的空气中处理1-3小时,得到纳米氮化铝粉末。本发明工艺简单,成本低,可得到球形度和分散性良好的、粉末颗粒粒度小于50nm的纳米氮化铝粉末。

    一种生产纳米碳化钒粉末的方法

    公开(公告)号:CN104495846A

    公开(公告)日:2015-04-08

    申请号:CN201410785489.8

    申请日:2014-12-17

    Abstract: 本发明涉及一种生产纳米碳化钒粉末的方法,属于陶瓷粉末制备技术领域。工艺过程为:(1)将钒源、碳源和辅助剂按照一定比例配成溶液;(2)将溶液加热,使溶液挥发、浓缩后分解,得到含有钒源和碳源前驱体粉末;(3)将前驱体粉末于700-1300℃温度范围内,在一定气氛下反应1-5小时。本发明工艺简单,成本低,易于产业化,得到的碳化钒粉末颗粒粒度小于50nm,分散性较好。

Patent Agency Ranking