一种基于卷积神经网络的实时车牌检测方法

    公开(公告)号:CN113947766A

    公开(公告)日:2022-01-18

    申请号:CN202111567665.7

    申请日:2021-12-21

    Abstract: 本发明公开了一种基于卷积神经网络的实时车牌检测方法,包括如下步骤:获取包含车牌的车辆图像,作为训练集,设计keypoint‑Anchor,提取训练集的特征;使用基于深度卷积神经网络的检测模型,作为车牌检测的基线网络架构,并按keypoint‑Anchor方式修改检测模型;使用训练集、目标框坐标及角点坐标对修改后的检测模型进行训练,获得训练好的检测模型;使用训练好的检测模型对待检测的图像进行检测,获得不同角度拍摄图像中车牌的检测结果。本发明实现方法简单,可移植性强,能够实现对摄像头拍摄的公路上、停车场、小区出入口等场所中车牌的精准检测。

    一种基于预训练生成模型的人脸超分辨方法

    公开(公告)号:CN113379606B

    公开(公告)日:2021-12-07

    申请号:CN202110934749.3

    申请日:2021-08-16

    Abstract: 本发明属于计算机视觉、图像处理领域,涉及一种基于预训练生成模型的人脸超分辨方法,包括:步骤一、采集并将低分辨率图像输入至特征提取模块,提取特征信息;步骤二、将特征信息输入至编码器,得到通道数为输入尺寸8倍的隐式矩阵,隐式矩阵通过分离模块特征分解后获得隐式向量,与人脸标签数据通过级联方式,分别输入至预训练生成模型中,得到生成特征;步骤三、将生成特征传递给解码器,并融合特征提取模块提取的特征信息,经解码操作后输出目标高分辨率图像。本发明可以将低分辨率的人脸进行高倍率的放大,最高可以获得64倍的超分结果,并且超分辨结果保持较好的保真性,使放大的图像在保真度和纹理真实度方面有更好的改进。

    一种基于频率分解多注意力机制的人脸超分辨方法

    公开(公告)号:CN113284051B

    公开(公告)日:2021-12-07

    申请号:CN202110834275.5

    申请日:2021-07-23

    Abstract: 本发明属于计算机视觉、图像处理领域,涉及一种基于频率分解多注意力机制的人脸超分辨方法,利用小波变换及其逆变换均可逆的性质,将输入的低分辨率人脸图像进行频率分解,针对不同频率的特征,采用不同的核卷积构建基础模块,自适应集成不同感受野的特征,利用残差注意力模块,包含像素、空间和通道注意力机制,对不同频率的特征分别进行处理,低频部分纹理采用较少计算量的注意力,高频部分采用更多的残差注意力模块,在保持计算量的同时将更多的网络应用于高频部分,利用预训练的人脸关键点提取网络进行关键点提取并进行反馈,增强轮廓特征,利用生成抵抗网络增强纹理特征。

    一种基于级联Transformer的视频群体行为识别方法

    公开(公告)号:CN113673489A

    公开(公告)日:2021-11-19

    申请号:CN202111225547.8

    申请日:2021-10-21

    Abstract: 本发明涉及计算机视觉及深度学习领域,尤其涉及一种基于级联Transformer的视频群体行为识别方法,首先采集生成视频数据集,将视频数据集经过三维骨干网络提取三维时空特征,选取关键帧图像空间特征图;对关键帧图像空间特征图进行预处理后送入人体目标检测Transformer,输出关键帧图像中的人体目标框;然后,映射筛选后人体目标框在关键帧图像特征图上所对应的子特征图,结合关键帧图像周围帧特征图计算query/key/value,输入群体行为识别Transfomer,输出群体级别时空编码特征图;最后,经过多层感知机对群体行为进行分类。本发明具有有效提高群体行为识别准确率的效果。

    一种神经网络结构化渐进剪枝方法及系统

    公开(公告)号:CN113516240A

    公开(公告)日:2021-10-19

    申请号:CN202110697462.3

    申请日:2021-06-23

    Abstract: 本发明涉及计算机视觉领域,涉及一种神经网络结构化渐进剪枝方法和系统,该方法包括:步骤S1:设定神经网络每层的裁剪率、剪枝标准及神经网络训练周期数;步骤S2:输入图片以训练神经网络,在一定训练周期内,每层裁剪率从零逐渐增加到设定的裁剪率,根据剪枝标准,确定每层的冗余信息并置为0;步骤S3:达到设定的裁剪率后,移除神经网络中的冗余信息,并重构原始的网络层;步骤S4:神经网络重构后,继续进行训练,直至达到设定的神经网络训练周期。本发明操作简单,步骤少,在正常神经网络训练过程中就能到达剪枝的目的,而且无需剪枝后的精调过程,因此可以大幅减少处理时间,相比现有技术在达到较高的裁剪率的同时能获得较高的性能。

    非尺度混叠及边缘保留的图像多尺度分解方法及调色方法

    公开(公告)号:CN113298890A

    公开(公告)日:2021-08-24

    申请号:CN202110527552.8

    申请日:2021-05-14

    Abstract: 本发明公开了非尺度混叠及边缘保留的图像多尺度分解方法及调色方法,在图像中,通过定义新型局部均值包络像素点,采取三次插值算法,获取自适应局部均值曲面,从而迭代操作获得多尺度图像分解,可以实现同时具有边缘保留和非尺度混叠双特性的图像多尺度分解,以得到含有不同尺度信息的高精度的精准的图像解析,对解析的各分量采用设定的线性或非线性算子操作,进一步可以实现灰度图像和彩色图像的多尺度调色处理。本发明的效果和益处是,提供了一种有效的同时具有边缘保留和非尺度混叠双特性的图像多尺度分解算法,可以同时实现无振铃现象和非尺度混合的图像分解以及在此基础上的多尺度调色应用。

    一种基于人体姿态估计和图像分类的吸烟行为检测方法

    公开(公告)号:CN112528960A

    公开(公告)日:2021-03-19

    申请号:CN202011588312.0

    申请日:2020-12-29

    Abstract: 本发明属于视频行为分析技术领域,涉及一种基于人体姿态估计和图像分类的吸烟行为检测方法,首先读取检测区域监控视频,对视频帧进行预处理和归一化,然后采用YoloV3目标检测方法进行人体框检测,得到人体框位置坐标,在视频帧上面进行剪裁,得到需要进行人体姿态估计的子图,再以所述子图作为输入,使用改进后的人体姿态估计的方法AlphaPose进行人体关键点检测提取,通过定位嘴部和左、右手腕关键点,截取相应的局部图像块,制作分类网络数据集,设计图像分类网络模型,进行网络训练,得到吸烟分类模型,再采用训练好的模型对实时图像进行分类判断,得到视频的吸烟行为检测结果。本发明较好的弥补了两种方法的不足,同时改进算法,提升了检测效率。

    一种面向车辆运行轨迹监测的跨镜追踪方法

    公开(公告)号:CN112257683A

    公开(公告)日:2021-01-22

    申请号:CN202011417659.9

    申请日:2020-12-07

    Abstract: 本发明公开了一种面向车辆运行轨迹监测的跨镜追踪方法,该方法包括采用生成对抗网络扩充车辆视频数据集,并在扩充后的数据集上训练基于轻量化卷积神经网络的车辆检测模型;将车辆检测模型部署到所有摄像头上,并创建摄像头间的位置关联字典;采用车辆检测模型提取摄像头中拍摄到的车辆的表观特征及在镜头内的连续位置,根据车辆的移动方向预测出车辆可能出现的下一组摄像头;将车辆的表观特征广播至下一组摄像头中,并根据表观特征在下一组摄像头中对车辆进行追踪,最终完成车辆的跨镜追踪。本发明所采用的跨镜追踪方法,能够实现对车辆的运行轨迹进行实时监测,当发现被监测车辆脱离预设路线时发出预警,可以协助监管人员快速排查被监测车辆。

    一种基于视觉的旋转设备作业手套佩戴检测方法及系统

    公开(公告)号:CN111507317A

    公开(公告)日:2020-08-07

    申请号:CN202010613767.7

    申请日:2020-06-30

    Abstract: 本发明公开了一种基于视觉的旋转设备作业手套佩戴检测方法及系统,包括:获取生产车间中实时生成的监控视频图像,在监控视频图像中绘制凸多边形规则框,使得整个旋转设备落于规则框内;基于人体目标检测神经网络模型对监控视频图像进行人体目标检测,获得目标人体;基于人体骨骼关键点检测神经网络模型对目标人体进行人体关键点检测,获得处于规则框内的目标人体的双手关键点;对双手关键点进行区域分割,得到感兴趣区域,并对感兴趣区域进行初始分类;对初始分类后的感兴趣区域进行跟踪,并通过联合投票算法得到感兴趣区域的最终分类结果。本发明可以降低漏检,提高手套检测及分类的准确率,并通过多线程流水线处理模式降低整个处理过程的耗时。

Patent Agency Ranking