-
公开(公告)号:CN113987855B
公开(公告)日:2024-11-08
申请号:CN202111106157.9
申请日:2021-09-22
Applicant: 东南大学
Abstract: 本发明公开了一种基于两级代理模型的结构区间不确定性材料参数识别方法,涉及结构不确定性材料参数的识别方法,解决了目前确定性方法识别结构不确定性材料参数时面临的识别精度低、计算稳定性差、分析效率低的技术问题,其技术方案要点是构建了区间不确定性材料参数与区间模态频率间的关联关系,仅需对结构进行小样本的仿真计算,即可快速准确地识别区间不确定性材料参数,具有重要的工程应用价值。
-
公开(公告)号:CN118607333A
公开(公告)日:2024-09-06
申请号:CN202410629928.X
申请日:2024-05-21
Applicant: 东南大学
IPC: G06F30/25 , G06N3/0499 , G06N3/096 , G01N25/20 , G06F119/08
Abstract: 本发明公开了融合物理机制的热防护结构三维温度场重构方法及装置,涉及航天热防护结构温度在线监控技术领域。本发明包括:接收实测瞬态温度响应数据,所述实测瞬态温度响应数据是基于夹芯式热防护结构开展热传导试验得到;构建瞬态热传导物理模型;构建以时间参数、空间参数作为输入的全连接神经网络,并利用实测瞬态温度响应作为实测数据约束并结合内嵌物理约束构建该神经网络的损失函数,通过循环迭代优化该神经网络的网络参数以使损失函数趋向0,得到可重构全局温度场的PINN模型。本发明基于热防护结构的实测温度响应,通过PINN实现热防护结构的三维温度场在线重构,并向不同的热防护结构热传导系统进行迁移学习,提高新模型的训练效率。
-
公开(公告)号:CN117515108A
公开(公告)日:2024-02-06
申请号:CN202311565957.6
申请日:2023-11-22
Applicant: 东南大学 , 江苏空天先进结构研究院有限公司
IPC: F16F15/16 , F16F15/06 , F16C35/077
Abstract: 本发明公开了一种弹性环式挤压油膜阻尼装置,涉及旋转机械转子技术领域。本发明包括支承座,所述支承座的侧壁上可拆式安装有调整环,所述调整环的侧壁上可拆式安装有油膜衬套,所述油膜衬套和支承座之间安装有弹性环,所述弹性环的内外两侧壁均固定连接有支撑脚,其内壁支撑脚抵接在油膜衬套的外壁上。本发明中弹性环内外侧具有可变形的支撑脚,与调整环和油膜衬套装配后,振动传递至油膜时,支撑脚可产生不同程度的变形,不仅能够缓解转子振动外传,还能够避免弹性环受到振动变形后,油膜发生周向流动,且通过螺钉将油膜衬套端面与调整环不同阶梯连接,可调整油膜衬套轴向距离,便于调节油膜初始压力与厚度和弹性环支撑脚预紧力。
-
公开(公告)号:CN117010607A
公开(公告)日:2023-11-07
申请号:CN202310496735.7
申请日:2023-05-05
Applicant: 青岛港国际股份有限公司 , 青岛新前湾集装箱码头有限责任公司 , 山东省港口集团有限公司 , 东南大学
IPC: G06Q10/0631 , B65G63/00 , G06Q10/0637 , G06Q10/083
Abstract: 本发明公开了一种AGV与ASC交互方式动态变更方法,在自动化集装箱码头垂直布局下,通过ASC和AGV的作业类型、交互方式以及指令状态来动态调整海侧交互点位置,快速决策选择最佳交互点位置,实现AGV与ASC的最快释放,防止设备资源浪费,相比现有的海侧交互点固定分配方式,提高了交互的合理化程序,减少了设备作业的等待时间,在AGV与ASC之间实现自适应协同调配,显著提高了码头装卸船作业效率。
-
公开(公告)号:CN111310269B
公开(公告)日:2021-01-26
申请号:CN202010114613.3
申请日:2020-02-25
Applicant: 东南大学
IPC: G06F30/13 , G16C60/00 , G06F111/10 , G06F119/14
Abstract: 本发明公开了一种考虑边界位移的固支梁结构非线性动特性分析方法,包括如下步骤:根据边界位移和结构材料参数,通过非线性分析计算固支梁的挠度曲线的解析解;建立考虑边界位移的固支梁结构非线性振动方程,通过矩阵传递法和逐步搜索法求解变系数振动微分方程,进而得到考虑边界位移的梁结构非线性振动模态频率和模态振型解析解。本发明的动特性分析方法考虑了边界位移导致的几何非线性梁的动特性的影响,并考虑了梁挠度和振动模态的耦合作用。本发明能够有效提高复杂环境下梁结构动特性分析精度,指导工程结构设计。
-
公开(公告)号:CN111274723B
公开(公告)日:2021-01-12
申请号:CN202010021917.5
申请日:2020-01-09
Applicant: 东南大学
IPC: G06F30/23 , G06F119/08
Abstract: 本发明公开了一种力/热环境下复合材料整流罩结构分离及强度可靠性分析方法,该方法包括如下步骤:S1:建立整流罩结构有限元模型;S2:根据分离过程各部分结构的相对位置与相互作用关系对步骤S1建立的有限元模型添加接触设置;S3:对步骤S1建立的有限元模型施加冲击载荷、温度载荷和边界条件;S4:基于LS‑DYNA求解器进行动力学问题求解;S5:基于LS‑DYNA后处理软件LS‑PREPOST软件进行后处理,提取单元的应力、位移、转动角度结果;S6:基于步骤S5提取的应力结果进行计及不确定性强度参数的Chang‑Chang模型开展复合材料层合板的可靠性分析。本发明的技术方案可实现对复合材料结构在冲击载荷/温度载荷联合作用下的分离过程分析,进而实现对复合材料层合板的强度可靠性评估。
-
公开(公告)号:CN108491595B
公开(公告)日:2019-03-29
申请号:CN201810189961.X
申请日:2018-03-07
Applicant: 东南大学
IPC: G06F17/50
Abstract: 本发明提供了一种声‑固耦合结构的高频局部响应预示方法,结合了有限元法、模态功率流平衡方程和局部能量预示理论预示了声‑固耦合结构的高频局部响应,使用有限元法得到结构子系统在耦合边的位移模态振型、声腔子系统在耦合边的应力模态振型、子系统的固有频率和模态质量,通过计算子系统之间的模态耦合损耗因子,再建立子系统间的模态功率流平衡方程并求解,获得结构子系统的模态能量。最后利用局部能量预示理论求解结构子系统局部能量响应,通过各向同性材料应变能与应力应变的关系求解局部应力/应变响应。本方法能够准确地预示声‑固耦合结构的高频局部响应,解决了传统有限元法和边界元法等离散化方法计算效率低、统计能量分析方法的各项假设在工程应用中往往不是完全满足且难以得到子系统的局部能量问题。
-
公开(公告)号:CN106446386B
公开(公告)日:2019-03-19
申请号:CN201610825251.2
申请日:2016-09-14
Applicant: 东南大学
IPC: G06F17/50
Abstract: 本发明公开了模态能量法中模态间耦合强度的一种界定方法,包括如下步骤:(1)根据模态参数确定两个耦合模态间的临界陀螺耦合系数γcrit(ω)、陀螺耦合系数γ;(2)根据所述临界陀螺耦合系数和陀螺耦合系数确定两个耦合模态间的耦合强度系数κ;(3)根据模态参数确定两个耦合模态间的临界强度系数κcrit;(4)根据所述耦合强度系数和临界强度系数确定两个耦合模态间的耦合强度;(5)确定模态输入功率简化措施的适用范围。该方法确定了模态输入功率简化措施的适用范围,为设计人员在选取模态输入功率的计算方法时提供依据,在一定程度上提高分析效率的同时确保了结果的可靠性。
-
公开(公告)号:CN109145369A
公开(公告)日:2019-01-04
申请号:CN201810754412.2
申请日:2018-07-11
Applicant: 东南大学
IPC: G06F17/50
CPC classification number: G06F17/5018
Abstract: 本发明提供了一种计及非共振传输的中高频局部动响应预示方法,将声‑固耦合结构解耦为结构子系统和声腔子系统,分别建立子系统的有限元模型,并对子系统进行模态分析,计算子系统之间的陀螺耦合系数;建立各个模态上关于角频率的功率流平衡方程,进而获得子系统在角频率处的模态能量;确定子系统在研究频带内的模态阶数,并计算各个模态计及非共振传输的模态能量;建立子系统在研究频带内的模态能量与模态振型幅值之间的关系;基于局部能量预示理论求解结构和声腔子系统的局部能量响应。本发明方法与现有统计模态能量分布分析法相比,考虑了非共振模态间的功率传输,因此计算得到的模态能量更加接近真实值,进而能够更精确地预示大阻尼系统的中高频局部动响应。
-
公开(公告)号:CN108427853A
公开(公告)日:2018-08-21
申请号:CN201810255778.5
申请日:2018-03-26
Applicant: 东南大学
IPC: G06F17/50
CPC classification number: G06F17/5009
Abstract: 本发明提供了一种考虑不确定性的结构瞬态统计能量响应预示方法,相比于传统瞬态统计能量方法仅能针对确定性结构进行动响应预示,未考虑结构参数随机性、测量误差等不确定性因素的问题,本发明通过区间方法对结构的不确定性进行表征,考虑了不确定性对结构子系统间的能量传递和耗散的影响,基于能量控制方程建立了更为精准的结构各子系统瞬态能量的表达式,基于泰勒展开技术将其子系统瞬态能量的表达式转化为适合区间计算的多项式形式,从而将瞬态统计能量分析方法推广应用到了不确定性结构的动力学响应分析,拓展了目前瞬态统计能量分析方法的研究范围,具有重要的工程应用价值。
-
-
-
-
-
-
-
-
-