-
公开(公告)号:CN106558022B
公开(公告)日:2020-08-25
申请号:CN201611075966.7
申请日:2016-11-30
Applicant: 重庆大学
Abstract: 一种基于边缘差异约束的单幅图像超分辨率重建方法的实现包括以下三个步骤:步骤1,通过Gabor滤波器提取训练图像的纹理主方向特征,进行主成分分析字典训练得到训练字典。步骤2,利用该字典构建重建模型,并通过迭代阈值收缩得到具有较好边缘结构的初始重建高分辨率图像。步骤3,利用图像块之间的方向梯度直方图描述算子、空间距离、像素强度和边缘方向信息,建立一种非局部结构张量优化模型,对初始高重建高分辨率图像进一步优化后处理,得到具有显著边缘结构及丰富细节信息的最终重建高分辨率图像。本发明考虑到初始重建高分辨率图像与原始清晰图像存在一定的差异,进一步提出了后处理优化方法,丰富图像的边缘和纹理等细节信息。
-
公开(公告)号:CN109063826A
公开(公告)日:2018-12-21
申请号:CN201811066871.8
申请日:2018-09-13
Applicant: 重庆大学
IPC: G06N3/04
CPC classification number: G06N3/0454
Abstract: 本发明公开了一种基于忆阻器的卷积神经网络实现方法,包括制备由卷积+池化层与全连接层构成的待训练的卷积神经网络,并输入训练集图像信息,得到全连接层输出值;根据待训练的卷积神经网络的全连接层输出值与标准信息的偏差,利用反向传播函数对待训练的卷积神经网络进行训练;当达到训练次数时,判定训练精度是否达标,若不达标则对训练后的卷积神经网络进行再次训练,直至精度达标;获得所需卷积神经网络等步骤。其显著效果是:在硬件上减少了对精度和制备难度、时间的影响;实现了更高级的多层卷积神经网络;不易受到硬件噪声、制备难度和时间的影响,在应用复杂化后能够表现出更强的适应能力。
-
公开(公告)号:CN109063826B
公开(公告)日:2019-05-31
申请号:CN201811066871.8
申请日:2018-09-13
Applicant: 重庆大学
IPC: G06N3/04
Abstract: 本发明公开了一种基于忆阻器的卷积神经网络实现方法,包括制备由卷积+池化层与全连接层构成的待训练的卷积神经网络,并输入训练集图像信息,得到全连接层输出值;根据待训练的卷积神经网络的全连接层输出值与标准信息的偏差,利用反向传播函数对待训练的卷积神经网络进行训练;当达到训练次数时,判定训练精度是否达标,若不达标则对训练后的卷积神经网络进行再次训练,直至精度达标;获得所需卷积神经网络等步骤。其显著效果是:在硬件上减少了对精度和制备难度、时间的影响;实现了更高级的多层卷积神经网络;不易受到硬件噪声、制备难度和时间的影响,在应用复杂化后能够表现出更强的适应能力。
-
公开(公告)号:CN106558022A
公开(公告)日:2017-04-05
申请号:CN201611075966.7
申请日:2016-11-30
Applicant: 重庆大学
CPC classification number: G06T3/4053 , G06K9/6223
Abstract: 一种基于边缘差异约束的单幅图像超分辨率重建方法的实现包括以下三个步骤:步骤1,通过Gabor滤波器提取训练图像的纹理主方向特征,进行主成分分析字典训练得到训练字典。步骤2,利用该字典构建重建模型,并通过迭代阈值收缩得到具有较好边缘结构的初始重建高分辨率图像。步骤3,利用图像块之间的方向梯度直方图描述算子、空间距离、像素强度和边缘方向信息,建立一种非局部结构张量优化模型,对初始高重建高分辨率图像进一步优化后处理,得到具有显著边缘结构及丰富细节信息的最终重建高分辨率图像。本发明考虑到初始重建高分辨率图像与原始清晰图像存在一定的差异,进一步提出了后处理优化方法,丰富图像的边缘和纹理等细节信息。
-
-
-