-
公开(公告)号:CN111860660A
公开(公告)日:2020-10-30
申请号:CN202010722838.7
申请日:2020-07-24
Applicant: 辽宁工程技术大学
Abstract: 本发明公开了一种基于改进高斯网络的小样本学习垃圾分类方法,包括:将收集到的数据集拆分为80%的支持集和20%的测试集,然后分别输入到高斯原型网络中通过编码器转换为矢量;计算编码器中的协方差矩阵以及父类集合的边缘权重;根据线性欧几里德距离计算嵌入空间中类别和方向相关的距离度量并且测量支持集与测试集之间的相似性,并且进行汇总;根据特定的损失函数计算方式得到损失,并且反向传播更新网络参数。本发明的方法相对于其它方法都有显著的提高,分类准确率最多提高20%左右,训练消耗时间有明显的区分,对于多噪声,分布广泛的数据集有很好的适用性,提出并建立了垃圾数据集可供读者下载使用。