-
公开(公告)号:CN109034231A
公开(公告)日:2018-12-18
申请号:CN201810785729.2
申请日:2018-07-17
Applicant: 辽宁大学
CPC classification number: G06K9/6223 , G06K9/6256 , G06N3/0445 , G06N7/02
Abstract: 本发明涉及一种信息反馈RBF网络估值的不完整数据模糊聚类方法,步骤如下:1)提出信息反馈RBF网络模型;2),提出一种信息反馈RBF数值型估值的不完整数据模糊聚类方法(IFRBF‑FCM);3)利用最近邻规则为不完整数据样本选取相应的训练样本集,利用最近邻训练样本集为每个缺失属性训练IFRBF网络,从而实现对不完整数据样本中缺失属性的估值预测,得到IFRBF网络估值恢复后的完整数据集;4)对不完整数据属性的估值区间进行确定,提出了一种IFRBF区间型估值的不完整数据模糊聚类方法(IFRBF‑IFCM),得到模糊聚类结果。本发明采用IFRBF网络对不完整数据集进行估值得到的恢复完整的数据集的聚类结果与对比方法相比提高了准确率,比数值型估值的聚类结果更准确,鲁棒性也更好。