-
公开(公告)号:CN112434133A
公开(公告)日:2021-03-02
申请号:CN202011389237.5
申请日:2020-12-02
Applicant: 康佳集团股份有限公司 , 苏州大学 , 哈尔滨工业大学(深圳) , 深圳哈工大科技创新产业发展有限公司
IPC: G06F16/33 , G06F16/332 , G06F16/35 , G06F40/295 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种意图分类方法、装置、智能终端及存储介质,其中,上述意图分类方法包括:获取目标文本;基于上述目标文本进行命名实体识别,获取命名实体识别结果;基于上述命名实体识别结果,对上述目标文本进行规范化处理,获取规范化处理后的文本句式,作为规范化处理结果;基于上述目标文本和上述规范化处理结果进行意图分类;输出上述意图分类的结果。本发明方案不必基于模板进行意图分析,且可以结合文本的句式特征强化意图分类的性能;使得意图分类时不依赖于模板,不受数据规模以及数据质量的影响,同时可缓解进行分类时遗忘文本特征的问题,有利于提高意图分类的准确性。
-
公开(公告)号:CN112434133B
公开(公告)日:2024-05-17
申请号:CN202011389237.5
申请日:2020-12-02
Applicant: 康佳集团股份有限公司 , 苏州大学 , 哈尔滨工业大学(深圳) , 深圳哈工大科技创新产业发展有限公司
IPC: G06F16/33 , G06F16/332 , G06F16/35 , G06F40/295 , G06F40/30 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种意图分类方法、装置、智能终端及存储介质,其中,上述意图分类方法包括:获取目标文本;基于上述目标文本进行命名实体识别,获取命名实体识别结果;基于上述命名实体识别结果,对上述目标文本进行规范化处理,获取规范化处理后的文本句式,作为规范化处理结果;基于上述目标文本和上述规范化处理结果进行意图分类;输出上述意图分类的结果。本发明方案不必基于模板进行意图分析,且可以结合文本的句式特征强化意图分类的性能;使得意图分类时不依赖于模板,不受数据规模以及数据质量的影响,同时可缓解进行分类时遗忘文本特征的问题,有利于提高意图分类的准确性。
-
公开(公告)号:CN114817564A
公开(公告)日:2022-07-29
申请号:CN202210458635.0
申请日:2022-04-15
Applicant: 苏州大学
IPC: G06F16/36 , G06F16/35 , G06F40/284 , G06F40/216 , G06N3/04 , G06N3/08
Abstract: 本发明将属性抽取任务化为片段抽取式阅读理解任务,采用属性抽取与文本属性判断联合训练的多任务模型。模型以BERT‑B i‑LSTM作为编码模块,分别对输入文本与问题编码,将结构化信息作为问题来增强模型的泛化能力。然后使用词边界特征增强的方法以帮助模型捕获属性值的边界特征,结合多头注意力机制在全局向量特征的基础上融入词汇特征。同时,设计一种文本特征交互方法,用于判断文本中是否存在与问题对应的属性值,该方法作为辅助任务与属性值边界预测任务联合训练。
-
公开(公告)号:CN114817564B
公开(公告)日:2024-08-23
申请号:CN202210458635.0
申请日:2022-04-15
Applicant: 苏州大学
IPC: G06F16/36 , G06F16/35 , G06F40/284 , G06F40/216 , G06N3/0455 , G06N3/082 , G06N3/0442
Abstract: 本发明将属性抽取任务化为片段抽取式阅读理解任务,采用属性抽取与文本属性判断联合训练的多任务模型。模型以BERT‑B i‑LSTM作为编码模块,分别对输入文本与问题编码,将结构化信息作为问题来增强模型的泛化能力。然后使用词边界特征增强的方法以帮助模型捕获属性值的边界特征,结合多头注意力机制在全局向量特征的基础上融入词汇特征。同时,设计一种文本特征交互方法,用于判断文本中是否存在与问题对应的属性值,该方法作为辅助任务与属性值边界预测任务联合训练。
-
-
-