-
公开(公告)号:CN111297350B
公开(公告)日:2021-08-31
申请号:CN202010122175.5
申请日:2020-02-27
Applicant: 福州大学
IPC: A61B5/346
Abstract: 本发明涉及一种融合源端影响的三心拍多模型综合决策心电特征分类方法,包括以下步骤;步骤S1:采集待测心电信号,并进行预处理,得到心电信号数据集;步骤S2:构建特征提取模型,并提取心电特征和源端特征;步骤S3:构建解码重构模型,并通过解码重构模型将特征提取模型所提取的特征还原成心电信号;步骤S4:构建特征分类模型,对特征提取模型所提取的心电特征进行分类;步骤S5:训练特征提取模型以及解码重构模型,并以解码重构模型的生成信号与原始信号的差异训练特征提取模型以及解码重构模型;步骤S6:融合循环训练步骤S2的特征提取模型的特征,融合决策分类结果。本发明优化特征提取,综合考虑各种因素以提高心电分类准确度。
-
公开(公告)号:CN116898451A
公开(公告)日:2023-10-20
申请号:CN202310888666.4
申请日:2023-07-19
Applicant: 福州大学
IPC: A61B5/318 , A61B5/346 , A61B5/00 , G06F18/214 , G06F18/24 , G06N3/0464 , G06N3/08
Abstract: 本发明提出用具有多尺度注意力机制的神经网络实现房颤预测的方法,包括以下步骤:步骤S1:对房颤心电信号AFECG数据集和正常窦性心律心电信号NSR ECG数据集进行采集划分和数据预处理;步骤S2:设计神经网络架构对房颤数据进行初步预测,在此网络架构的基础上对预测网络结构优化;步骤S3:在房颤预测数据的不同导联之间进行导联注意力机制的构建;步骤S4:在神经网络中不同的特征图之间进行时间空间注意力机制的构建;步骤S5:在房颤预测数据不同时序片段上进行时序注意力机制的构建;步骤S6:在完成上述各注意力机制子类模块的构建后,将子类模块与基础神经网络融合,然后进行神经网络的整体优化,形成最终的房颤预测网络;本发明可提高预测房颤准确率。
-
公开(公告)号:CN111297350A
公开(公告)日:2020-06-19
申请号:CN202010122175.5
申请日:2020-02-27
Applicant: 福州大学
IPC: A61B5/0402
Abstract: 本发明涉及一种融合源端影响的三心拍多模型综合决策心电特征分类方法,包括以下步骤;步骤S1:采集待测心电信号,并进行预处理,得到心电信号数据集;步骤S2:构建特征提取模型,并提取心电特征和源端特征;步骤S3:构建解码重构模型,并通过解码重构模型将特征提取模型所提取的特征还原成心电信号;步骤S4:构建特征分类模型,对特征提取模型所提取的心电特征进行分类;步骤S5:训练特征提取模型以及解码重构模型,并以解码重构模型的生成信号与原始信号的差异训练特征提取模型以及解码重构模型;步骤S6:融合循环训练步骤S2的特征提取模型的特征,融合决策分类结果。本发明优化特征提取,综合考虑各种因素以提高心电分类准确度。
-
-