-
公开(公告)号:CN112118556B
公开(公告)日:2022-11-18
申请号:CN202011079226.7
申请日:2020-10-10
Applicant: 湖北工业大学
Abstract: 本发明提供一种基于深度强化学习的无人机轨迹及功率联合优化方法,其特征在于:建立无人机系统模型,对无人机轨迹控制和功率分配问题进行描述;建立马尔可夫模型,包括通过设置状态、动作空间和奖励函数,确定马尔可夫决策过程;采用深度确定性策略梯度方法,实现轨迹控制和功率分配的联合优化。应用本发明无人机可以准确移动到目标用户设备附近以提供无线服务,这可以减轻对未服务的用户设备的同信道干扰,同时控制无人机的发射功率,以实现频谱效率与避免干扰之间的平衡。
-
公开(公告)号:CN110691422A
公开(公告)日:2020-01-14
申请号:CN201910946631.5
申请日:2019-10-06
Applicant: 湖北工业大学
Abstract: 本发明属于无线通信技术领域,具体涉及一种基于深度强化学习的多信道智能接入方法,旨在将深度强化学习策略引入到多信道接入,以期实现多信道的智能接入。针对现有多信道接入策略较难适应信道环境动态性问题,本发明提出基于深度强化学习的多信道智能接入方法。首先,将多信道智能接入问题建模为离散状态与动作空间的马尔可夫决策过程,提出Q-learning方法以实现多信道的智能接入。在此基础上,针对Q-learning状态空间大和收敛慢等特点,通过设计深度神经网络,利用梯度下降法来训练深度神经网络的权值,修正损失函数解决状态-动作函数过高估计问题,以获得近似最优的多信道智能接入策略。
-
公开(公告)号:CN111294813B
公开(公告)日:2022-04-29
申请号:CN202010077912.4
申请日:2020-02-01
Applicant: 湖北工业大学
Abstract: 本发明提出了一种无人机流量卸载的多阶段逆向选择契约模型优化方法。通过把无人机参与流量卸载场景映射成劳动力市场,将基于市场驱动的契约模型应用到流量卸载激励机制中,建立地面基站模型和空中无人机模型。其次,考虑到流量卸载场景中无人机的自私性和网络信息的非对称性,针对热点地区流量需求、无人机位置和无线信道等因素的动态特性,通过设计贯穿两阶段的流量卸载动态契约模型,结合个人理性和激励相容约束条件,实现对无人机私有信息的甄别,以激励其积极参与流量卸载。本发明保证流量卸载的实现,且本发明方法易于实现,基站和无人机之间的信息交互较少,因而该方法所需的信令开销较少。
-
公开(公告)号:CN110691422B
公开(公告)日:2021-07-13
申请号:CN201910946631.5
申请日:2019-10-06
Applicant: 湖北工业大学
Abstract: 本发明属于无线通信技术领域,具体涉及一种基于深度强化学习的多信道智能接入方法,旨在将深度强化学习策略引入到多信道接入,以期实现多信道的智能接入。针对现有多信道接入策略较难适应信道环境动态性问题,本发明提出基于深度强化学习的多信道智能接入方法。首先,将多信道智能接入问题建模为离散状态与动作空间的马尔可夫决策过程,提出Q‑learning方法以实现多信道的智能接入。在此基础上,针对Q‑learning状态空间大和收敛慢等特点,通过设计深度神经网络,利用梯度下降法来训练深度神经网络的权值,修正损失函数解决状态‑动作函数过高估计问题,以获得近似最优的多信道智能接入策略。
-
公开(公告)号:CN111918321A
公开(公告)日:2020-11-10
申请号:CN202010708100.5
申请日:2020-07-22
Applicant: 湖北工业大学
Abstract: 本发明属于移动流量预测技术领域,公开了一种基于时空注意卷积网络的移动流量预测方法,时空注意卷积网络通过三个时间部件分别对小时周期、日周期、周周期的移动流量网络进行建模,并得到对应的三个移动流量预测信息;将三个移动流量预测信息与外部干扰信息进行融合,得到最终的移动流量预测结果。本发明有效解决了移动流量的预测问题。
-
公开(公告)号:CN110972160B
公开(公告)日:2022-06-28
申请号:CN201910998025.8
申请日:2019-10-21
Applicant: 湖北工业大学
Abstract: 本发明属于无人机流量卸载技术领域,具体涉及一种异构蜂窝网络中无人机流量卸载契约机制设计方法。将基于市场驱动的契约模型应用到无人机流量卸载任务中,建立非对称信息下的基站模型和无人机模型;考虑到无人机的自私性,无人机可能不愿意在没有额外奖励的情况下参与多个流量卸载任务,通过提出多维契约激励方法,来激励无人机参与多个流量卸载任务;针对流量卸载任务之间相互不影响,在契约设计过程中分析任务独立性问题,建立随机参数独立模型,任务独立模型;通过评估无人机的表现,基站将奖励并激励他们参与流量卸载任务并更加努力工作,从而达到无人机和基站效用最大化的目的。
-
公开(公告)号:CN111294813A
公开(公告)日:2020-06-16
申请号:CN202010077912.4
申请日:2020-02-01
Applicant: 湖北工业大学
Abstract: 本发明提出了一种无人机流量卸载的多阶段逆向选择契约模型优化方法。通过把无人机参与流量卸载场景映射成劳动力市场,将基于市场驱动的契约模型应用到流量卸载激励机制中,建立地面基站模型和空中无人机模型。其次,考虑到流量卸载场景中无人机的自私性和网络信息的非对称性,针对热点地区流量需求、无人机位置和无线信道等因素的动态特性,通过设计贯穿两阶段的流量卸载动态契约模型,结合个人理性和激励相容约束条件,实现对无人机私有信息的甄别,以激励其积极参与流量卸载。本发明保证流量卸载的实现,且本发明方法易于实现,基站和无人机之间的信息交互较少,因而该方法所需的信令开销较少。
-
公开(公告)号:CN111263332A
公开(公告)日:2020-06-09
申请号:CN202010136467.4
申请日:2020-03-02
Applicant: 湖北工业大学
Abstract: 本发明提供一种基于深度强化学习的无人机轨迹及功率联合优化方法,其特征在于:建立无人机系统模型,对无人机轨迹控制和功率分配问题进行描述;建立马尔可夫模型,包括通过设置状态、动作空间和奖励函数,确定马尔可夫决策过程;采用深度确定性策略梯度方法,实现轨迹控制和功率分配的联合优化。应用本发明无人机可以准确移动到目标用户设备附近以提供无线服务,这可以减轻对未服务的用户设备的同信道干扰,同时控制无人机的发射功率,以实现频谱效率与避免干扰之间的平衡。
-
公开(公告)号:CN111918321B
公开(公告)日:2022-08-05
申请号:CN202010708100.5
申请日:2020-07-22
Applicant: 湖北工业大学
IPC: H04W24/06 , H04L41/147 , H04L41/14 , H04L41/142 , G06N3/08 , G06N3/04
Abstract: 本发明属于移动流量预测技术领域,公开了一种基于时空注意卷积网络的移动流量预测方法,时空注意卷积网络通过三个时间部件分别对小时周期、日周期、周周期的移动流量网络进行建模,并得到对应的三个移动流量预测信息;将三个移动流量预测信息与外部干扰信息进行融合,得到最终的移动流量预测结果。本发明有效解决了移动流量的预测问题。
-
公开(公告)号:CN112118556A
公开(公告)日:2020-12-22
申请号:CN202011079226.7
申请日:2020-10-10
Applicant: 湖北工业大学
Abstract: 本发明提供一种基于深度强化学习的无人机轨迹及功率联合优化方法,其特征在于:建立无人机系统模型,对无人机轨迹控制和功率分配问题进行描述;建立马尔可夫模型,包括通过设置状态、动作空间和奖励函数,确定马尔可夫决策过程;采用深度确定性策略梯度方法,实现轨迹控制和功率分配的联合优化。应用本发明无人机可以准确移动到目标用户设备附近以提供无线服务,这可以减轻对未服务的用户设备的同信道干扰,同时控制无人机的发射功率,以实现频谱效率与避免干扰之间的平衡。
-
-
-
-
-
-
-
-
-