一种复杂场景的未知异常障碍物识别方法及系统

    公开(公告)号:CN114926819A

    公开(公告)日:2022-08-19

    申请号:CN202210607410.7

    申请日:2022-05-31

    Applicant: 海南大学

    Abstract: 本发明涉及一种复杂场景的未知异常障碍物识别方法及系统,该系统包括:特征编码器模块:用以将输入图片编码为高维特征张量,提取输入特征;未知注意力生成模块,用以生成未知注意力权重图,该注意力图对不确定性高区域生成高权重,反之注意力图较低;注意力信息提示模块,用以对注意力高区域给予真值提示;语义分割结果预测模块,用以预测像素为各类别的概率。本发明通过训练模型将有效注意力放在不确定性区域高的区域来以此根据模型注意力权重值来预测是否为未知异常障碍物。与现有技术相比本发明具有应用性强、计算量小、普适性强等优点。

    一种复杂场景的未知异常障碍物识别方法及系统

    公开(公告)号:CN114926819B

    公开(公告)日:2024-06-21

    申请号:CN202210607410.7

    申请日:2022-05-31

    Applicant: 海南大学

    Abstract: 本发明涉及一种复杂场景的未知异常障碍物识别方法及系统,该系统包括:特征编码器模块:用以将输入图片编码为高维特征张量,提取输入特征;未知注意力生成模块,用以生成未知注意力权重图,该注意力图对不确定性高区域生成高权重,反之注意力图较低;注意力信息提示模块,用以对注意力高区域给予真值提示;语义分割结果预测模块,用以预测像素为各类别的概率。本发明通过训练模型将有效注意力放在不确定性区域高的区域来以此根据模型注意力权重值来预测是否为未知异常障碍物。与现有技术相比本发明具有应用性强、计算量小、普适性强等优点。

    一种基于可分辨特征的半监督物体检测系统及其训练方法

    公开(公告)号:CN115797621A

    公开(公告)日:2023-03-14

    申请号:CN202211422460.4

    申请日:2022-11-14

    Applicant: 海南大学

    Abstract: 本发明涉及机器视觉的中的目标检测领域,具体涉及一种基于可分辨特征的半监督物体检测系统及其训练方法,系统包括:输入图像特征提取模块、可分辨特征敏感的区域建议模块、可分辨特征提取与存储模块、可分辨特征的数据增强模块和物体识别与定位模块;所述训练方法包括:步骤1:确定目标检测网络,并搭建如上所述的系统;步骤2:收集应用场景数据集,所述应用场景数据集包括有标签数据和无标签数据;步骤3:使用所述应用场景数据集对系统进行训练;步骤4:迭代前一步骤,直到训练的系统模型达到理想物体检测效果。通过本发明,提高模型对数据的利用能力,有效解决半监督学习中过分依赖有标签数据而对无标签数据利用不足的问题。

Patent Agency Ranking