-
公开(公告)号:CN112861130B
公开(公告)日:2022-09-06
申请号:CN202110118437.5
申请日:2021-01-28
Applicant: 济南大学
Abstract: 本公开提供了一种从N到N+1的多类转换恶意软件检测方法,包括获取待测软件的网络流量,输入到预训练的检测模型中,输出待测软件的检测结果;其中,所述检测模型的训练及更新过程包括:通过聚类算法对初始训练集进行分类处理,将所述初始训练集构建成树形结构,树的节点为训练样本中不同类别的质心;随着训练样本的更新,将增量数据样本输入预训练的检测模型,对所述检测模型进行更新,生成最新的检测模型;所述方案通过对动态增长的数据集进行有效处理,解决了训练数据的数量和类的数量随着时间的推移而增加场景下的恶意软件检测问题。
-
公开(公告)号:CN112861130A
公开(公告)日:2021-05-28
申请号:CN202110118437.5
申请日:2021-01-28
Applicant: 济南大学
Abstract: 本公开提供了一种从N到N+1的多类转换恶意软件检测方法,包括获取待测软件的网络流量,输入到预训练的检测模型中,输出待测软件的检测结果;其中,所述检测模型的训练及更新过程包括:通过聚类算法对初始训练集进行分类处理,将所述初始训练集构建成树形结构,树的节点为训练样本中不同类别的质心;随着训练样本的更新,将增量数据样本输入预训练的检测模型,对所述检测模型进行更新,生成最新的检测模型;所述方案通过对动态增长的数据集进行有效处理,解决了训练数据的数量和类的数量随着时间的推移而增加场景下的恶意软件检测问题。
-
公开(公告)号:CN112764791A
公开(公告)日:2021-05-07
申请号:CN202110097851.2
申请日:2021-01-25
Applicant: 济南大学
Abstract: 本发明提供了增量更新的恶意软件检测方法及系统。其中该方法包括获取应用程序产生的TCP流,提取TCP流的统计特征;将TCP流的统计特征输入至增量更新的检测模型中,输出应用程序是否为恶意应用程序;增量更新的检测模型的训练过程为:使用训练集Train1和测试集Test1对初始化模型进行训练和测试;将增量数据集划分临时训练集Temp和测试集I‑Test;其中增量数据集、训练集Train1和测试集Test1均由正常应用程序及恶意应用程序所产生的TCP流的统计特征构成;使用临时训练集Temp训练临时模型;临时模型和初始化模型均由设定数量的决策树模型构成;使用测试集I‑Test分别对初始化模型和临时模型进行测试,通过精确度筛选初始化模型和临时模型中决策树模型,最终组成最新的检测模型。
-
公开(公告)号:CN112764791B
公开(公告)日:2023-08-08
申请号:CN202110097851.2
申请日:2021-01-25
Applicant: 济南大学
IPC: G06F8/658 , G06F21/56 , G06F18/214 , G06F18/2431
Abstract: 本发明提供了增量更新的恶意软件检测方法及系统。其中该方法包括获取应用程序产生的TCP流,提取TCP流的统计特征;将TCP流的统计特征输入至增量更新的检测模型中,输出应用程序是否为恶意应用程序;增量更新的检测模型的训练过程为:使用训练集Train1和测试集Test1对初始化模型进行训练和测试;将增量数据集划分临时训练集Temp和测试集I‑Test;其中增量数据集、训练集Train1和测试集Test1均由正常应用程序及恶意应用程序所产生的TCP流的统计特征构成;使用临时训练集Temp训练临时模型;临时模型和初始化模型均由设定数量的决策树模型构成;使用测试集I‑Test分别对初始化模型和临时模型进行测试,通过精确度筛选初始化模型和临时模型中决策树模型,最终组成最新的检测模型。
-
-
-