一种采用非下采样轮廓波变换的图像边缘检测方法

    公开(公告)号:CN101980287B

    公开(公告)日:2012-05-09

    申请号:CN201010561492.3

    申请日:2010-11-28

    Abstract: 本发明公开了一种采用非下采样轮廓波变换的图像边缘检测方法,对输入的含噪图像进行NSCT分解为低频系数和高频系数、对低频系数矩阵和各方向子带系数矩阵进行多方向微动得到多幅微动调制图像、将各微动调制图像与原子带图像相减以得到多幅微动变化图像、引入视觉竞争机制取模极大值进行竞争以得到强化的各子带边缘图、设置合适的阈值去除各子带边缘图中的噪声、对低频子带粗边缘图及同一尺度内各方向子带边缘叠加得到的各尺度粗边缘图进行中心细化以得到低频子带细边缘图及各尺度细边缘图,取或运算融合低频子带细边缘图与各尺度细边缘图,得到最终的融合边缘图。本发明提供的方法噪声适应性好,边缘检测完整且定位准确。

    一种采用非下采样轮廓波变换的图像边缘检测方法

    公开(公告)号:CN101980287A

    公开(公告)日:2011-02-23

    申请号:CN201010561492.3

    申请日:2010-11-28

    Abstract: 本发明公开了一种采用非下采样轮廓波变换的图像边缘检测方法,对输入的含噪图像进行NSCT分解为低频系数和高频系数、对低频系数矩阵和各方向子带系数矩阵进行多方向微动得到多幅微动调制图像、将各微动调制图像与原子带图像相减以得到多幅微动变化图像、引入视觉竞争机制取模极大值进行竞争以得到强化的各子带边缘图、设置合适的阈值去除各子带边缘图中的噪声、对低频子带粗边缘图及同一尺度内各方向子带边缘叠加得到的各尺度粗边缘图进行中心细化以得到低频子带细边缘图及各尺度细边缘图,取或运算融合低频子带细边缘图与各尺度细边缘图,得到最终的融合边缘图。本发明提供的方法噪声适应性好,边缘检测完整且定位准确。

Patent Agency Ranking