基于生成对抗式双通道权重分配的图像融合方法及装置

    公开(公告)号:CN114972146B

    公开(公告)日:2024-11-12

    申请号:CN202210603129.6

    申请日:2022-05-25

    Abstract: 本发明提供了一种基于生成对抗式双通道权重分配的图像融合方法及装置,其方法包括:构建初始图像融合模型,包括生成器模块和孪生鉴别器模块,生成器模块包括伪孪生特征提取模块和特征融合模块;获取红外图像样本和可见光图像样本,并基于伪孪生特征提取模块获得红外特征图和可见光特征图;基于特征融合模块生成融合特征图;基于孪生鉴别模块分别获得融合特征图与红外图像样本的第一相似度及与可见光图像样本的第二相似度;对初始图像融合模型进行训练,获得目标图像融合模型;基于目标图像融合模型对待融合红外图像和待融合可见光图像进行融合,获得目标融合图像。本发明可获得具有清晰目标和丰富细节纹理的目标融合图像。

    一种实例分割网络优化方法、设备及介质

    公开(公告)号:CN119723073A

    公开(公告)日:2025-03-28

    申请号:CN202411598967.4

    申请日:2024-11-11

    Abstract: 本申请涉及一种实例分割网络优化方法、设备及介质,方法包括:获取批量的尾部数据样本,对尾部数据样本进行数据增广,得到尾部扩展样本;对尾部数据样本和尾部扩展样本进行对比学习,得到尾部对比损失;构建尾部扩展样本的伪语义标签;获取批量的头部数据样本,头部数据样本和尾部数据样本均包含真值标签;将头部数据样本、尾部数据样本和尾部扩展样本输入预设实例分割网络中,基于真值标签和伪语义标签计算分割掩码损失和类别损失;基于尾部对比损失、分割掩码损失和类别损失对预设实例分割网络进行调整,得到优化实例分割网络。解决了现有模型对尾部稀有类别的识别准确率均较低,导致长尾实例分割的效果较差的问题。

    基于生成对抗式双通道权重分配的图像融合方法及装置

    公开(公告)号:CN114972146A

    公开(公告)日:2022-08-30

    申请号:CN202210603129.6

    申请日:2022-05-25

    Abstract: 本发明提供了一种基于生成对抗式双通道权重分配的图像融合方法及装置,其方法包括:构建初始图像融合模型,包括生成器模块和孪生鉴别器模块,生成器模块包括伪孪生特征提取模块和特征融合模块;获取红外图像样本和可见光图像样本,并基于伪孪生特征提取模块获得红外特征图和可见光特征图;基于特征融合模块生成融合特征图;基于孪生鉴别模块分别获得融合特征图与红外图像样本的第一相似度及与可见光图像样本的第二相似度;对初始图像融合模型进行训练,获得目标图像融合模型;基于目标图像融合模型对待融合红外图像和待融合可见光图像进行融合,获得目标融合图像。本发明可获得具有清晰目标和丰富细节纹理的目标融合图像。

    一种复杂场景下的多目标视觉显著性分层检测方法

    公开(公告)号:CN111461139B

    公开(公告)日:2023-04-07

    申请号:CN202010227331.4

    申请日:2020-03-27

    Abstract: 本发明公开了一种复杂场景下的多目标视觉显著性分层检测方法,属于计算机视觉和图像处理技术领域。方法包括:基于格式塔线索将待检图像划分为多个图像块,对全部图像块进行显著性检测,根据显著性检测结果对全部图像块进行组合,并将图像块组合后的显著性检测结果作为第一层线索;使用一般性目标检测方法对待检图像进行目标检测,将目标检测结果作为第二层线索;基于交叉扩散方法,将第一层线索和所述第二层线索进行线索融合,并得到显著性结果图。本发明将格式塔线索运用到图像显著性检测中,针对具有复杂视觉场景和多目标分布的图像,充分利用感知结构信息和多目标分布信息,从而全面、均匀的突显出图像中具有明确边界的目标显著性区域。

    一种复杂场景下的多目标视觉显著性分层检测方法

    公开(公告)号:CN111461139A

    公开(公告)日:2020-07-28

    申请号:CN202010227331.4

    申请日:2020-03-27

    Abstract: 本发明公开了一种复杂场景下的多目标视觉显著性分层检测方法,属于计算机视觉和图像处理技术领域。方法包括:基于格式塔线索将待检图像划分为多个图像块,对全部图像块进行显著性检测,根据显著性检测结果对全部图像块进行组合,并将图像块组合后的显著性检测结果作为第一层线索;使用一般性目标检测方法对待检图像进行目标检测,将目标检测结果作为第二层线索;基于交叉扩散方法,将第一层线索和所述第二层线索进行线索融合,并得到显著性结果图。本发明将格式塔线索运用到图像显著性检测中,针对具有复杂视觉场景和多目标分布的图像,充分利用感知结构信息和多目标分布信息,从而全面、均匀的突显出图像中具有明确边界的目标显著性区域。

Patent Agency Ranking