-
公开(公告)号:CN108624021A
公开(公告)日:2018-10-09
申请号:CN201810334236.7
申请日:2018-04-14
Applicant: 桂林理工大学
CPC classification number: C08K3/22 , C08K3/26 , C08K3/36 , C08K5/098 , C08K5/14 , C08K5/5425 , C08K13/02 , C08K2003/2227 , C08K2003/265 , C08L67/06
Abstract: 本发明公开了一种太阳能硅片切割垫板用不饱和聚酯基复合材料的制备方法。将不饱和聚酯树脂、促进剂、填料和偶联剂加入钢杯中,强力机械搅拌,使各组分混合均匀,再加入固化剂,继续搅拌,然后将钢杯放入烘箱中抽真空处理;最后将钢杯中的混合物倒入模具中真空处理,放入烘箱内固化处理,脱模后,即制得太阳能硅片切割垫板用不饱和聚酯基复合材料。本发明的不饱和聚酯树脂板具有强度高、硬度适中、弹性模量大和收缩率低等特点;本发明的不饱和聚酯树脂板具有原料易得、加工工艺简便、成型固化快、生产成本低的优势;本发明的不饱和聚酯树脂板具有韧性好,对切割线的粘附和磨损小,切割精度高和产品良品率高。
-
公开(公告)号:CN104761648A
公开(公告)日:2015-07-08
申请号:CN201510182214.X
申请日:2015-04-15
Applicant: 桂林理工大学
IPC: C08B11/12
Abstract: 本发明公开了一种纳米纤维素的低耗能制备方法。将天然纤维素浸泡在氢氧化钠溶液中,于5~40℃下浸泡1~30分钟,制得混合液;称取氢氧化钠和乙醇,混合后加入到混合液中,缓慢搅拌下将反应升温至50~78℃,再加入氯乙酸钠,反应2.5~4小时,然后过滤,用蒸馏水洗涤至中性,制得处理后的纤维素,然后与水混合,制得质量分数为0.5~1.4%的纤维素混合液,然后在机械作用下进行剪切,最后通过过滤或离心分离,即制得纳米纤维素。本发明方法能将纳米纤维素的制备时间缩短至3~4小时,产率高,反应溶剂用量低,氯乙酸钠用量少,所产生的环境污染小,且能耗低,工艺稳定,重复性好,条件温和,操作简便,适宜于大规模推广。
-
公开(公告)号:CN102731756A
公开(公告)日:2012-10-17
申请号:CN201210256466.9
申请日:2012-07-24
Applicant: 桂林理工大学
IPC: C08G63/68 , C09D167/07
Abstract: 本发明公开了一种二茂铁二甲酸聚酯树脂及其合成方法。该树脂的特征在于采用二茂铁二甲酸单体与反丁烯二酸和二元醇,通过熔融缩聚制得分子链中含二茂铁基团结构的聚酯树脂。本发明制备的二茂铁二甲酸聚酯树脂,在分子主链中同时含有酯键、不饱和双键和二茂铁基团,因此它不仅具有典型的酯类性质和加聚反应活性,而且与铁磁类基材有更好的附着力及结合强度。该树脂的突出优点在于具有较好的阻燃性、固化温度范围宽,成型控制容易,制品热强度高,尺寸精度及性能稳定性好,可用于性能指标要求较高的磁性塑料及低温固化的铁基粉末涂料的粘结树脂。
-
公开(公告)号:CN106279441A
公开(公告)日:2017-01-04
申请号:CN201610813459.2
申请日:2016-09-11
Applicant: 桂林理工大学
Abstract: 本发明公开了一种羧基化改性的纤维素纳米晶须的制备方法。将天然纤维素经过一定浓度的酸溶液在一定温度下进行处理一定时间,然后进行干燥,粉碎处理,得到预处理产物,将预处理产物在一定浓度的碱性催化剂的无水乙醇溶液中浸泡一定时间,制得混合液;然后再向混合液中加入一定量的醚化试剂,在一定温度和时间下进行反应,反应完成后进行洗涤,然后烘干、粉碎干燥即得羧基化改性的纤维素纳米晶须。本发明方法所采用醚化试剂为氯乙酸或氯乙酸钠,廉价易得,产品成本控制在数万元每吨左右,且耗时短、产率高、溶剂用量低、环境污染小,适宜于大规模生产及应用。
-
公开(公告)号:CN105237686A
公开(公告)日:2016-01-13
申请号:CN201510669377.0
申请日:2015-10-18
Applicant: 桂林理工大学
IPC: C08F283/01 , C08K13/02 , C08K3/04 , C08K5/098 , C08K3/22 , C08K3/34 , C08L51/08 , C08L97/02 , C08L77/10 , C08G63/52 , C08G63/78
Abstract: 本发明公开了一种介孔-氧化石墨烯/不饱和聚酯模塑料的制备方法。按照以下质量百分比含量称取各组分:30~45%的介孔-氧化石墨烯/不饱和聚酯树脂,6~12%的交联剂,2~6%的引发剂,0.1~1%的促进剂,10~25%的增强剂,25~52%的填料,以上各组分质量百分比含量之和为100%。经高速混合、熔融混炼、挤出造粒、筛分批混、磁选包装等工序制得介孔-氧化石墨烯/不饱和聚酯模塑料。本发明制得的介孔-氧化石墨烯/不饱和聚酯模塑料具有成型固化工艺性好,固化完全,制品交联密度大,热强度高,尺寸精度及耐热耐磨绝缘性能稳定优良等优点,能够用作性能指标要求较高的电气绝缘结构件。
-
公开(公告)号:CN102731756B
公开(公告)日:2014-08-20
申请号:CN201210256466.9
申请日:2012-07-24
Applicant: 桂林理工大学
IPC: C08G63/68 , C09D167/07
Abstract: 本发明公开了一种二茂铁二甲酸聚酯树脂及其合成方法。该树脂的特征在于采用二茂铁二甲酸单体与反丁烯二酸和二元醇,通过熔融缩聚制得分子链中含二茂铁基团结构的聚酯树脂。本发明制备的二茂铁二甲酸聚酯树脂,在分子主链中同时含有酯键、不饱和双键和二茂铁基团,因此它不仅具有典型的酯类性质和加聚反应活性,而且与铁磁类基材有更好的附着力及结合强度。该树脂的突出优点在于具有较好的阻燃性、固化温度范围宽,成型控制容易,制品热强度高,尺寸精度及性能稳定性好,可用于性能指标要求较高的磁性塑料及低温固化的铁基粉末涂料的粘结树脂。
-
公开(公告)号:CN103435788A
公开(公告)日:2013-12-11
申请号:CN201310406076.X
申请日:2013-09-09
Applicant: 桂林理工大学
Abstract: 本发明公开了一种介孔材料/不饱和聚酯树脂(UP)及其合成方法。利用了介孔材料具有较高的比表面积、孔容量、孔径尺寸均一、排列有序以及水热稳定性好等特点,通过与单体二元醇一同球磨预分散处理,再经原位聚合,使介孔材料粉体有效分散到UP基体树脂中,形成介孔粒子与UP聚合物分子链互穿的有机-无机杂化结构,提高UP与介孔材料粉体之间的界面相容性和结合强度。该树脂的突出优点在于改进提高了热刚性,固化制品热强度高,尺寸精度及性能稳定性好,成型固化工艺性优良;可用作性能指标要求较高的复合材料的基体树脂。
-
公开(公告)号:CN105237686B
公开(公告)日:2017-12-12
申请号:CN201510669377.0
申请日:2015-10-18
Applicant: 桂林理工大学
IPC: C08F283/01 , C08K13/02 , C08K3/04 , C08K5/098 , C08K3/22 , C08K3/34 , C08L51/08 , C08L97/02 , C08L77/10 , C08G63/52 , C08G63/78
Abstract: 本发明公开了一种介孔‑氧化石墨烯/不饱和聚酯模塑料的制备方法。按照以下质量百分比含量称取各组分:30~45%的介孔‑氧化石墨烯/不饱和聚酯树脂,6~12%的交联剂,2~6%的引发剂,0.1~1%的促进剂,10~25%的增强剂,25~52%的填料,以上各组分质量百分比含量之和为100%。经高速混合、熔融混炼、挤出造粒、筛分批混、磁选包装等工序制得介孔‑氧化石墨烯/不饱和聚酯模塑料。本发明制得的介孔‑氧化石墨烯/不饱和聚酯模塑料具有成型固化工艺性好,固化完全,制品交联密度大,热强度高,尺寸精度及耐热耐磨绝缘性能稳定优良等优点,能够用作性能指标要求较高的电气绝缘结构件。
-
公开(公告)号:CN104761648B
公开(公告)日:2016-11-30
申请号:CN201510182214.X
申请日:2015-04-15
Applicant: 桂林理工大学
IPC: C08B11/12
Abstract: 本发明公开了一种纳米纤维素的低耗能制备方法。将天然纤维素浸泡在氢氧化钠溶液中,于5~40℃下浸泡1~30分钟,制得混合液;称取氢氧化钠和乙醇,混合后加入到混合液中,缓慢搅拌下将反应升温至50~78℃,再加入氯乙酸钠,反应2.5~4小时,然后过滤,用蒸馏水洗涤至中性,制得处理后的纤维素,然后与水混合,制得质量分数为0.5~1.4%的纤维素混合液,然后在机械作用下进行剪切,最后通过过滤或离心分离,即制得纳米纤维素。本发明方法能将纳米纤维素的制备时间缩短至3~4小时,产率高,反应溶剂用量低,氯乙酸钠用量少,所产生的环境污染小,且能耗低,工艺稳定,重复性好,条件温和,操作简便,适宜于大规模推广。
-
公开(公告)号:CN104072787B
公开(公告)日:2016-05-18
申请号:CN201410297896.4
申请日:2014-06-29
Applicant: 桂林理工大学
Abstract: 本发明公开了一种制备高浓度纳米纤维素胶体的方法。通过机械法、化学法、生物法或力化学法制备出纳米纤维素,所得纳米纤维素通过离心或微孔滤布过滤,使其与反应沉淀物相分离,制得纳米纤维素胶体;将纳米纤维素胶体低温冷冻结冰,使纳米纤维素之间形成聚集和缠结;将冷冻结冰的纳米纤维素胶体放置在0℃以上进行解冻,使聚集和缠结的纳米纤维素沉淀下来;将沉淀物通过过滤、压滤和洗涤处理,所得产物在机械剪切作用下分散于溶剂中,即制得高浓度纳米纤维素胶体。本发明方法能达到同时纯化和浓缩纳米纤维素胶体的效果,简化操作步骤,大大降低纳米纤维素的生产周期和成本,易于推广应用。
-
-
-
-
-
-
-
-
-