-
公开(公告)号:CN119226735A
公开(公告)日:2024-12-31
申请号:CN202411307450.5
申请日:2024-09-19
Applicant: 无锡学院
IPC: G06F18/20 , G06F18/213 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开一种基于深度学习的滚动轴承剩余寿命预测方法,将预先获取的滚动轴承的振动信号输入训练获得的端到端模型,利用端到端模型预测输出滚动轴承的剩余使用寿命;其中,端到端模型包括依次连接的第一卷积层、APP1层、第一Dropout层、第一Mixer模块、第二Mixer模块、第三Mixer模块、APP4层和全连接层。本发明采用的MDSCT模型的RUL预测使用原始振动数据,并通过融合多尺度深度可分离卷积注意力网络和PPSformer模块有效地提取轴承振动信号的全局和局部特征,优化了网络捕获的退化特征能力,使RUL预测更加准确。
-
公开(公告)号:CN118245775A
公开(公告)日:2024-06-25
申请号:CN202410364253.0
申请日:2024-03-28
Applicant: 无锡学院
IPC: G06F18/213 , G01M13/045 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种融合注意力机制的轻量级滚动轴承故障诊断方法,包括如下步骤:设置1D‑LECA‑Inception网络,输入端直接使用采集振动信号,端到端故障识别;1D‑LECA‑Inception网络提取振动信号中的故障,随后将提取到的精细特征传入自适应平均池化层,再将池化压缩后的突出特征信息送入全连接层进行故障的诊断输出。本发明直接使用一维原始的振动信号进行诊断,减少信号处理方法可能带来的特征信息缺失,是一种适合于复杂环境下的高效滚动轴承故障识别方法。
-