-
公开(公告)号:CN106060039A
公开(公告)日:2016-10-26
申请号:CN201610370689.6
申请日:2016-05-27
Applicant: 广东工业大学
IPC: H04L29/06
Abstract: 在面向大规模数据流的监控应用中,为了使管理更加高效,必须针对异常数据流的特征进行准确的在线识别。由于网络数据流在大规模网络实时环境中具有多维异构的特点,对异常数据流的挖掘必须使用较高的计算性能和较小的计算开销来满足所有符合匹配规则的异常数据流。本发明提出了一种面向异常数据流层次聚类挖掘算法,这种算法能够很好的适应多源异构环境下的异常流。挖掘算法主要包括两个部分,约束归并和层次聚类。算法将数据流进行嵌套层次聚类的同时进行约束归并,约束归并主要将聚类的数据流进行必连和不连约束并将约束进行闭包操作,防止类别间的过早聚类所产生分析误差。实验表明,该算法在挖掘异常数据流中相比其他分类检测算法具有较高的精确度。
-
公开(公告)号:CN106060039B
公开(公告)日:2019-08-23
申请号:CN201610370689.6
申请日:2016-05-27
Applicant: 广东工业大学
IPC: H04L29/06
Abstract: 在面向大规模数据流的监控应用中,为了使管理更加高效,必须针对异常数据流的特征进行准确的在线识别。由于网络数据流在大规模网络实时环境中具有多维异构的特点,对异常数据流的挖掘必须使用较高的计算性能和较小的计算开销来满足所有符合匹配规则的异常数据流。本发明提出了一种面向异常数据流层次聚类挖掘算法,这种算法能够很好的适应多源异构环境下的异常流。挖掘算法主要包括两个部分,约束归并和层次聚类。算法将数据流进行嵌套层次聚类的同时进行约束归并,约束归并主要将聚类的数据流进行必连和不连约束并将约束进行闭包操作,防止类别间的过早聚类所产生分析误差。实验表明,该算法在挖掘异常数据流中相比其他分类检测算法具有较高的精确度。
-