-
公开(公告)号:CN112607714B
公开(公告)日:2023-07-25
申请号:CN202110020388.1
申请日:2021-01-07
Applicant: 安徽大学绿色产业创新研究院
IPC: C01B19/04 , H10N10/852 , H10N10/10 , B82Y30/00 , B82Y40/00
Abstract: 本发明公开了一种Ag掺杂的PbSe基热电材料的制备方法,属于能源转换技术领域。首先采用水热合成PbSe纳米粒子,随后按一定化学计量比与自制的Ag纳米粒子复合,然后将复合纳米粒子在合适的压力和温度下退火,再结合高频炉加热、热压烧结工艺制备出PbSe‑X wt%Ag块体热电材料。本发明制备的PbSe‑X wt%Ag热电材料的电导率为5630.86~11099.02 S/m,热导率为0.50~0.70 W/mK,热电最优值为0.46~0.97。该制备方法周期短,操作简便,对设备要求低,而且所得热电材料为p型半导体,制备的PbSe基热电材料在能源转换领域具有潜在的应用价值。
-
公开(公告)号:CN112607714A
公开(公告)日:2021-04-06
申请号:CN202110020388.1
申请日:2021-01-07
Applicant: 安徽大学绿色产业创新研究院
Abstract: 本发明公开了一种Ag掺杂的PbSe基热电材料的制备方法,属于能源转换技术领域。首先采用水热合成PbSe纳米粒子,随后按一定化学计量比与自制的Ag纳米粒子复合,然后将复合纳米粒子在合适的压力和温度下退火,再结合高频炉加热、热压烧结工艺制备出PbSe‑X wt%Ag块体热电材料。本发明制备的PbSe‑X wt%Ag热电材料的电导率为5630.86~11099.02 S/m,热导率为0.50~0.70 W/mK,热电最优值为0.46~0.97。该制备方法周期短,操作简便,对设备要求低,而且所得热电材料为p型半导体,制备的PbSe基热电材料在能源转换领域具有潜在的应用价值。
-
公开(公告)号:CN113683062A
公开(公告)日:2021-11-23
申请号:CN202110977435.1
申请日:2021-08-24
Applicant: 安徽大学
Abstract: 本发明公开了一种SnSe2纳米片复合膨胀石墨(G)热电材料的制备方法,属于能源转换技术领域。首先采用油相合成方法制备出SnSe2纳米粒子,随后按一定质量比称取适量的SnSe2纳米粒子和膨胀石墨,研磨充分且混合均匀,得到SnSe2‑X wt%G(X为复合G的质量比)前驱体粉末,然后将前驱体粉末在合适的压力和温度下进行退火、热压烧结得到SnSe2‑X wt%G块体热电材料。本发明制备的SnSe2‑X wt%G热电材料的电导率为390~2450 S/m,热导率为0.34~0.55 Wm‑1K‑1。本发明制备热电材料具有烧结温度低,制备周期短,操作简便,对设备要求低等优点,实现了SnSe2基热电材料热电最优值显著提高的制备方法。
-
公开(公告)号:CN110329997A
公开(公告)日:2019-10-15
申请号:CN201910357627.5
申请日:2019-04-29
Applicant: 安徽大学
Abstract: 本发明公开了一种液相合成低热导率SnSe纳米材料的制备方法,属于材料制备及能源转化技术领域。采用液相合成和退火热压相结合的方法,以去氧蒸馏水为溶剂,以一定比例的硒源和锡源制备成SnSe纳米材料,尺寸约为25 nm。将其退火通过热压操作压成的片,测得在室温下热导率为0.291 Wm-1k-1,在350℃的温度下其热导率仅为0.237 Wm-1k-1,与同族化合物SnTe和其他方法制得的SnSe相比热导率低。较低的热导性能有效的减少热量的损失,说明该低热导率的纳米材料是良好的潜在热电材料,材料本身无毒且容易大量合成,合成成本低等优点,具有较好的实际应用价值。
-
-
-