-
公开(公告)号:CN115712738A
公开(公告)日:2023-02-24
申请号:CN202211429752.0
申请日:2022-11-15
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/383 , G06F40/289 , G06F18/25
Abstract: 本发明公开了一种融合多源数据的Telegram中文群组检索方法、装置及设备,所述方法包括:对获取检索词,并对所述检索词进行Telegram中文群组检索,生成多源融合群组;分析多源融合群组对应的群聊记录集合,得到特征词集合;基于特征词集合筛选所述多源融合群组,得到符合特征群组;对符合特征群组进行关联联想,生成关联联想群组;基于所述多源融合群组与符合特征群组集合,得到Telegram中文群组检索结果。本发明着重于解决Telegram中文群组检索困难。
-
公开(公告)号:CN114021627B
公开(公告)日:2025-04-22
申请号:CN202111239649.5
申请日:2021-10-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F18/25 , G06F18/2411 , G06N3/0442 , G06N3/08
Abstract: 本发明公开了一种融合LSTM与场景规则知识的异常轨迹检测方法及装置,包括依据目标轨迹构建时序序列;将时序序列输入LSTM网络,获取的目标轨迹中每个时刻的位置隐向量,并基于各位置隐向量进行注意力机制计算,得到目标轨迹表示向量;拼接目标轨迹表示向量与设定场景规则的向量,并对拼接后向量进行分类,得到异常轨迹检测结果。本发明采用的融合方法除了使用向量表示轨迹之外,还加入了可调整的应用场景规则,解决单一方法的不足,具有更好的迁移性。
-
公开(公告)号:CN114626425B
公开(公告)日:2024-11-08
申请号:CN202011456860.8
申请日:2020-12-10
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F18/22 , G06F40/30 , G06F40/284 , G06N3/0464 , G06N3/045 , G06N3/0442 , G06N3/084
Abstract: 本发明提供一种面向噪声文本的多视角交互匹配方法及电子装置,包括对两段待匹配噪声文本分别编码,得到两段编码向量序列,并向两段编码向量序列的每个编码向量中加入位置信息;对加入位置信息的两段编码向量序列进行内部交互,分别得到两段内部交互结果;对两段内部交互结果进行外部交互,分别构建两个双向的噪声文本交互矩阵;拼接两个噪声文本交互矩阵,判断两个待匹配噪声文本是否匹配。本发明采用注意力机制捕获噪声文本之间的双向匹配模式,受噪声文本中句子的逻辑顺序影响较小,增加文本有效语义单词影响,提高模型时间效率及噪声文本匹配效果,避免传递匹配问题。
-
公开(公告)号:CN115269834A
公开(公告)日:2022-11-01
申请号:CN202210782688.8
申请日:2022-06-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于BERT的高精度文本分类方法及装置,在输入端采用FastText模型,对词汇进行嵌入表示得到表示向量,然后把表示向量作为BERT模型的输入,将BERT的输出结果接上全连接层+softmax,实现文本分类。本发明提前用FastText模型处理语料数据,获取字符的特征,解决了OOV的embedding问题,同时获取词的形态变换,对富有词型变换的语料具有更好的表示能力;使用BERT能够提前预训练大量的语料,增加了词向量的语义丰富度,获得更好的上下文表示;在BERT模型的输出添加全连接层和softmax进行文本分类,提高了文本分类的精度。
-
公开(公告)号:CN114626425A
公开(公告)日:2022-06-14
申请号:CN202011456860.8
申请日:2020-12-10
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06K9/62 , G06F40/289 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种面向噪声文本的多视角交互匹配方法及电子装置,包括对两段待匹配噪声文本分别编码,得到两段编码向量序列,并向两段编码向量序列的每个编码向量中加入位置信息;对加入位置信息的两段编码向量序列进行内部交互,分别得到两段内部交互结果;对两段内部交互结果进行外部交互,分别构建两个双向的噪声文本交互矩阵;拼接两个噪声文本交互矩阵,判断两个待匹配噪声文本是否匹配。本发明采用注意力机制捕获噪声文本之间的双向匹配模式,受噪声文本中句子的逻辑顺序影响较小,增加文本有效语义单词影响,提高模型时间效率及噪声文本匹配效果,避免传递匹配问题。
-
公开(公告)号:CN114461931A
公开(公告)日:2022-05-10
申请号:CN202111573021.9
申请日:2021-12-21
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/9537 , G06K9/62 , G06N3/04 , G06Q10/04
Abstract: 本发明涉及一种基于多关系融合分析的用户轨迹预测方法和系统。该方法根据用户的历史轨迹相似关系和位置邻近关系,构建轨迹关系图,然后基于轨迹关系图中用户间的关系,利用融入注意力机制的轨迹预测模型对目标用户的未来轨迹进行预测。本发明充分考虑了用户出行具有的时间规律性特征,并充分挖掘了人群中的社会行为信息,预测精度具有明显的提高;本发明使用融入注意力机制的轨迹关系图来计算影响力大小,融入了不同用户对轨迹影响的差异,更加符合实际情况;本发明不仅利用了位置相邻的行人的轨迹行为信息,也考虑了历史轨迹相似用户的轨迹情况,将两种影响人群结合在一起构建轨迹关系图,解决了怎样对多种类型信息进行建模的问题。
-
公开(公告)号:CN114461931B
公开(公告)日:2024-11-08
申请号:CN202111573021.9
申请日:2021-12-21
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/9537 , G06N3/0442 , G06F18/22 , G06F18/23 , G06Q10/04
Abstract: 本发明涉及一种基于多关系融合分析的用户轨迹预测方法和系统。该方法根据用户的历史轨迹相似关系和位置邻近关系,构建轨迹关系图,然后基于轨迹关系图中用户间的关系,利用融入注意力机制的轨迹预测模型对目标用户的未来轨迹进行预测。本发明充分考虑了用户出行具有的时间规律性特征,并充分挖掘了人群中的社会行为信息,预测精度具有明显的提高;本发明使用融入注意力机制的轨迹关系图来计算影响力大小,融入了不同用户对轨迹影响的差异,更加符合实际情况;本发明不仅利用了位置相邻的行人的轨迹行为信息,也考虑了历史轨迹相似用户的轨迹情况,将两种影响人群结合在一起构建轨迹关系图,解决了怎样对多种类型信息进行建模的问题。
-
公开(公告)号:CN118709688A
公开(公告)日:2024-09-27
申请号:CN202410746400.0
申请日:2024-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F40/295 , G06F40/242 , G06N5/04 , G06N3/0455 , G06N3/0499 , G06N3/082
Abstract: 本发明公开一种基于问答机制的文本变体词识别方法、装置及设备,属于文本信息识别领域。所述方法包括:构建变体词库,并通过汉字的字形和拼音的分别编码对所述变体词库进行数据增强;在数据增强后的变体词库上训练一变体词推理模型,所述变体词推理模型的网络结构包括:一语言表征模型和两个独立的全连接层;将问答模板与文本内容相连接后输入所述变体词推理模型,得到文本内容中变体词的起始位置概率和结束位置概率;基于变体词的起始位置概率和结束位置概率确定变体词的确切边界,得到文本内容中变体词的识别结果。本发明不仅能够提高变体词识别的准确性,还能够有效地降低模型的维护成本,增强其在实际应用中的适应性和鲁棒性。
-
公开(公告)号:CN118708728A
公开(公告)日:2024-09-27
申请号:CN202410746389.8
申请日:2024-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/36 , G06F16/33 , G06N5/04 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于难度序列推理的篇章级事件论元抽取方法及系统,属于文本信息抽取领域。本发明根据文档上下文选择对应的提示学习模板,对上下文和提示学习模板进行编码,得到上下文表示和提示表示,该提示表示包含论元角色的向量表示;根据每个论元角色的向量表示计算每个论元角色的预测困难分数,根据预测困难份数对论元角色进行排序,得到预测的推理路径;按照预测的推理路径的顺序进行信息推理,得到每个论元角色的推理概率分布;根据得到的每个论元角色的推理概率分布,预测每个论元角色的位置并抽取论元。本发明能够利用简单论元的信息来帮助抽取困难的论元。
-
公开(公告)号:CN114021627A
公开(公告)日:2022-02-08
申请号:CN202111239649.5
申请日:2021-10-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开了一种融合LSTM与场景规则知识的异常轨迹检测方法及装置,包括依据目标轨迹构建时序序列;将时序序列输入LSTM网络,获取的目标轨迹中每个时刻的位置隐向量,并基于各位置隐向量进行注意力机制计算,得到目标轨迹表示向量;拼接目标轨迹表示向量与设定场景规则的向量,并对拼接后向量进行分类,得到异常轨迹检测结果。本发明采用的融合方法除了使用向量表示轨迹之外,还加入了可调整的应用场景规则,解决单一方法的不足,具有更好的迁移性。
-
-
-
-
-
-
-
-
-