一种基于LSTMC混合网络的船舶横摇预测方法

    公开(公告)号:CN112948969B

    公开(公告)日:2022-07-15

    申请号:CN202110226036.1

    申请日:2021-03-01

    Abstract: 本发明一种基于LSTMC混合网络的船舶横摇预测方法,使用Pandas读取数据集数据并进行数据的预处理,将大地风速、船舶姿态角及其角速度数据传入网络进行训练;搭建LSTMC混合网络;训练LSTMC混合网络;用Keras高层接口Keras.Model.fit()方法进行模型的训练,设置保存评价指标MSE、MAPE最优的一次模型参数;把新的船舶姿态数据传入到训练好的混合网络中去,得到预测的船舶姿态数据。本发明能够快速准确地完成对船舶横摇的预测,相比其他单一的神经网络模型,不仅能够提取时间特征,而且能够提取空间特征,提高预测精度。

    一种船舶纵摇预测方法
    2.
    发明授权

    公开(公告)号:CN115062756B

    公开(公告)日:2024-11-22

    申请号:CN202210523350.0

    申请日:2022-05-13

    Abstract: 本发明公开了一种船舶纵摇预测方法,读取船舶运动数据并转化为监督学习数据,所述监督学习数据包括样本数据和标签;搭建基于通道注意力机制的Bi‑ConvLSTM网络,包括两层双向ConvLSTM循环网络、CNN网络、通道注意力机制和全连接层;采用梯度下降的方法训练网络,训练参数包括迭代次数epoch、批次大小batch_size,模型训练采用反向传播更新模型参数,保存迭代次数最大时的模型参数,并记录到训练时的MSE;将待预测的船舶运动数据输入训练好的所述基于通道注意力机制的Bi‑ConvLSTM网络,得到船舶纵摇预测结果。本发明所提出的网络模型预测精度和性能更好,且训练收敛速度更快。

    一种基于LSTMC混合网络的船舶横摇预测方法

    公开(公告)号:CN112948969A

    公开(公告)日:2021-06-11

    申请号:CN202110226036.1

    申请日:2021-03-01

    Abstract: 本发明一种基于LSTMC混合网络的船舶横摇预测方法,使用Pandas读取数据集数据并进行数据的预处理,将大地风速、船舶姿态角及其角速度数据传入网络进行训练;搭建LSTMC混合网络;训练LSTMC混合网络;用Keras高层接口Keras.Model.fit()方法进行模型的训练,设置保存评价指标MSE、MAPE最优的一次模型参数;把新的船舶姿态数据传入到训练好的混合网络中去,得到预测的船舶姿态数据。本发明能够快速准确地完成对船舶横摇的预测,相比其他单一的神经网络模型,不仅能够提取时间特征,而且能够提取空间特征,提高预测精度。

    一种船舶纵摇预测方法
    4.
    发明公开

    公开(公告)号:CN115062756A

    公开(公告)日:2022-09-16

    申请号:CN202210523350.0

    申请日:2022-05-13

    Abstract: 本发明公开了一种船舶纵摇预测方法,读取船舶运动数据并转化为监督学习数据,所述监督学习数据包括样本数据和标签;搭建基于通道注意力机制的Bi‑ConvLSTM网络,包括两层双向ConvLSTM循环网络、CNN网络、通道注意力机制和全连接层;采用梯度下降的方法训练网络,训练参数包括迭代次数epoch、批次大小batch_size,模型训练采用反向传播更新模型参数,保存迭代次数最大时的模型参数,并记录到训练时的MSE;将待预测的船舶运动数据输入训练好的所述基于通道注意力机制的Bi‑ConvLSTM网络,得到船舶纵摇预测结果。本发明所提出的网络模型预测精度和性能更好,且训练收敛速度更快。

Patent Agency Ranking