-
公开(公告)号:CN103942776B
公开(公告)日:2017-01-25
申请号:CN201410083794.2
申请日:2014-03-10
Applicant: 哈尔滨工程大学
IPC: G06T7/00
Abstract: 本发明涉及一种基于支持向量数据描述的近边界端元提取方法。本发明的目的是这样实现的:(1)基于支持向量数据描述获取近边界端元搜索区域:(2)基于PCA最值最大距离法初始化端元集。本发明实施简单,为端元提取过程搜索空间大、随机初始化端元影响提取结果的两大难题找到有效的解决方案。两部可独立改善提取结果性能,也可结合使用,在效率和精度上同时取得性能的提升。此外两方面都可以灵活适用于其他的端元提取算法,为有端元提取需求的相关研究内容提供了一个通用、高效、性能优越的处理模板。
-
公开(公告)号:CN104794457A
公开(公告)日:2015-07-22
申请号:CN201510223971.7
申请日:2015-05-05
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及的是一种基于稀疏误差矩阵的高光谱图像目标检测方法。本发明包括:读入高光谱数据这一图像的大小为m×n,输入正定权重系数λ;利用RPCA方法,将高光谱图像分解为一个低秩矩阵A和一个稀疏误差矩阵E;利用稀疏误差矩阵E第一波段进行目标检测。在此目标检测模型中,不需要假设目标和背景的分布特性,检测方法简单。由于背景像元和目标像元本身光谱特性的区别,它们分布在不同的子空间中。根据上述特性,将不同子空间的图像数据映射到一个低秩矩阵和一个稀疏误差矩阵:低秩矩阵中通常包含图像中背景信息,稀疏误差矩阵中包含目标信息及噪声信息。通过鲁棒主成分分析方法解得稀疏误差矩阵,利用稀疏误差矩阵第一主成分即可检测目标。
-
公开(公告)号:CN103530875A
公开(公告)日:2014-01-22
申请号:CN201310466843.6
申请日:2013-10-09
Applicant: 哈尔滨工程大学
IPC: G06T7/00
Abstract: 本发明提供了一种端元提取数据预处理方法,该方法通过建立基于模糊特征空间核空间引力模型,为高光谱数据像素点定义像元变异指数,实现了高光谱图像变异像素点的检测和移除。首先对高光谱数据集合进行模糊特征空间变换,得到模糊特征。利用像素的模糊特征,运用高斯径向基核函数优化的空间引力模型,计算3×3的空间邻域窗口内,邻域像素对中心像素的累加引力值,该引力值与像素变异指数成反比,对高变异指数像素进行移除。
-
公开(公告)号:CN103530875B
公开(公告)日:2016-08-17
申请号:CN201310466843.6
申请日:2013-10-09
Applicant: 哈尔滨工程大学
IPC: G06T7/00
Abstract: 本发明提供了一种端元提取数据预处理方法,该方法通过建立基于模糊特征空间核空间引力模型,为高光谱数据像素点定义像元变异指数,实现了高光谱图像变异像素点的检测和移除。首先对高光谱数据集合进行模糊特征空间变换,得到模糊特征。利用像素的模糊特征,运用高斯径向基核函数优化的空间引力模型,计算3×3的空间邻域窗口内,邻域像素对中心像素的累加引力值,该引力值与像素变异指数成反比,对高变异指数像素进行移除。
-
公开(公告)号:CN103942776A
公开(公告)日:2014-07-23
申请号:CN201410083794.2
申请日:2014-03-10
Applicant: 哈尔滨工程大学
IPC: G06T7/00
Abstract: 本发明涉及一种基于支持向量数据描述的近边界端元提取方法。本发明的目的是这样实现的:(1)基于支持向量数据描述获取近边界端元搜索区域:(2)基于PCA最值最大距离法初始化端元集。本发明实施简单,为端元提取过程搜索空间大、随机初始化端元影响提取结果的两大难题找到有效的解决方案。两部可独立改善提取结果性能,也可结合使用,在效率和精度上同时取得性能的提升。此外两方面都可以灵活适用于其他的端元提取算法,为有端元提取需求的相关研究内容提供了一个通用、高效、性能优越的处理模板。
-
公开(公告)号:CN103646409B
公开(公告)日:2016-08-17
申请号:CN201310699067.4
申请日:2013-12-19
Applicant: 哈尔滨工程大学
IPC: G06T9/00
Abstract: 本发明涉及的是一种高光谱图像压缩编码方法,具体地说是一种多元向量量化的高光谱图像压缩编码方法。多元向量量化的高光谱图像压缩编码方法,包括读入高光谱图像数据;构建压缩字典:根据2种多元向量量化模型和字典原子选择策略,利用多元回归计算每一像元压缩时所使用的字典原子及其系数压缩和编码。本发明重新构建向量量化模型,提出2种多元向量量化模型,省略的误差信息要比传统的向量量化方法中的误差信息量少,而且在新提出的多元向量量化模型中,选取出的字典原子的系数也没有限定,其值为根据光谱本身和字典构成计算得出,从而保证了重建图像的质量,减小压缩编码所造成的图像失真。
-
公开(公告)号:CN103646409A
公开(公告)日:2014-03-19
申请号:CN201310699067.4
申请日:2013-12-19
Applicant: 哈尔滨工程大学
IPC: G06T9/00
Abstract: 本发明涉及的是一种高光谱图像压缩编码方法,具体地说是一种多元向量量化的高光谱图像压缩编码方法。多元向量量化的高光谱图像压缩编码方法,包括读入高光谱图像数据;构建压缩字典:根据2种多元向量量化模型和字典原子选择策略,利用多元回归计算每一像元压缩时所使用的字典原子及其系数压缩和编码。本发明重新构建向量量化模型,提出2种多元向量量化模型,省略的误差信息要比传统的向量量化方法中的误差信息量少,而且在新提出的多元向量量化模型中,选取出的字典原子的系数也没有限定,其值为根据光谱本身和字典构成计算得出,从而保证了重建图像的质量,减小压缩编码所造成的图像失真。
-
公开(公告)号:CN103020955A
公开(公告)日:2013-04-03
申请号:CN201210464869.2
申请日:2012-11-16
Applicant: 哈尔滨工程大学
IPC: G06T7/00
Abstract: 本发明提供的是一种邻域空间窗口的高光谱图像稀疏表示目标检测方法。其步骤是:步骤1:待检测像元的邻域空间窗口大小的确定;步骤2:利用贪婪追踪算法,计算邻域空间窗口内各像元的稀疏系数;步骤3:分别计算基于背景过完备字典重建的像元重建误差和基于目标过完备字典重建的像元重建误差,依据误差大小,判定像元是否为检测目标。本发明能够提高数据处理的可靠性、高效性,并进一步提高了目标检测的性能以及光谱图像目标检测处理的效率。
-
-
-
-
-
-
-