-
公开(公告)号:CN116416472A
公开(公告)日:2023-07-11
申请号:CN202310398056.6
申请日:2023-04-14
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提供了一种基于多关系图卷积神经网络的骨架数据动作识别方法,包括人体自然连接关系,对称关系和全局协作关系,从不同尺度对骨架数据提取高级特征,并通过关系注意力机制将其进行有效融合。通过这种方式,让网络更关注于不同动作中的关键部位信息,并且不会丢失其他部位有效的信息。为了解决图卷积神经网络普遍存在的过拟合和过平滑问题,本发明提出了一种新的正则化方式:Drop‑Relation,传统方式往往通过丢弃单独图节点或者成块图节点的方式,这样并不能阻止节点信息继续在图中传播,而Drop‑Relation让整个关系矩阵全部失活,有效的阻止关系图中的信息在网络中传播,并且可以抑制各个关系之间的依赖性,有效的缓解图卷积的过拟合和过平滑问题。