一种基于自适应粒子群优化的前视声纳水下目标跟踪方法

    公开(公告)号:CN109146922B

    公开(公告)日:2021-07-06

    申请号:CN201810757443.3

    申请日:2018-07-11

    Abstract: 本发明涉及的图像处理技术领域,具体地说是一种基于自适应粒子群优化的前视声纳水下目标跟踪方法,本发明提出由迭代次数与适应度值自适应调整惯性权重,平衡粒子的探索与开发能力,使粒子能快速搜索到全局最优解;选择种群中的随机粒子与当前粒子的个体最优值进行比较,采用两者中个体最优值较大的粒子,更新粒子的速度,解决粒子陷入局部最优的问题。当水下目标被遮挡时,根据目标遮挡情况,提出利用新的自适应离散群优化算法的更新机制更新粒子,最终完成前视声纳水下目标跟踪。本发明对水下目标跟踪具有较好的跟踪精度和较快的跟踪速度,并且当目标存在遮挡、对比度变化较大、弱小目标、受噪声影响严重等情况仍然具有一定的有效性和适应性。

    一种基于自适应粒子群优化的前视声纳水下目标跟踪方法

    公开(公告)号:CN109146922A

    公开(公告)日:2019-01-04

    申请号:CN201810757443.3

    申请日:2018-07-11

    Abstract: 本发明涉及的图像处理技术领域,具体地说是一种基于自适应粒子群优化的前视声纳水下目标跟踪方法,本发明提出由迭代次数与适应度值自适应调整惯性权重,平衡粒子的探索与开发能力,使粒子能快速搜索到全局最优解;选择种群中的随机粒子与当前粒子的个体最优值进行比较,采用两者中个体最优值较大的粒子,更新粒子的速度,解决粒子陷入局部最优的问题。当水下目标被遮挡时,根据目标遮挡情况,提出利用新的自适应离散群优化算法的更新机制更新粒子,最终完成前视声纳水下目标跟踪。本发明对水下目标跟踪具有较好的跟踪精度和较快的跟踪速度,并且当目标存在遮挡、对比度变化较大、弱小目标、受噪声影响严重等情况仍然具有一定的有效性和适应性。

    一种基于前视声纳的改进核相关滤波水下目标跟踪方法

    公开(公告)号:CN109308713A

    公开(公告)日:2019-02-05

    申请号:CN201810870281.4

    申请日:2018-08-02

    Abstract: 本发明为了得到更好的前视声纳水下目标跟踪效果,提出了一种基于改进核相关滤波算法的水下目标跟踪方法。主要包括如下步骤:(1)前视声纳图像的预处理;(2)选取动态连续变化尺度的检测基样本,利用滤波器模型检测声纳图像目标的最佳位置;(3)根据峰值旁瓣比自适应更新滤波器模型,在更新过程中,选取动态连续变化的训练基样本来计算不同尺度的滤波器模型,最终实现前视声纳水下目标跟踪。对采集的水下目标原始数据进行实验结果分析,验证提出的基于改进核相关滤波算法对前视声纳水下目标跟踪具有较高的跟踪精度,并且当目标尺度发生变化、目标中途消失又出现等情况仍然具有一定的有效性和适应性。

    一种基于前视声纳的改进核相关滤波水下目标跟踪方法

    公开(公告)号:CN109308713B

    公开(公告)日:2021-11-19

    申请号:CN201810870281.4

    申请日:2018-08-02

    Abstract: 本发明为了得到更好的前视声纳水下目标跟踪效果,提出了一种基于改进核相关滤波算法的水下目标跟踪方法。主要包括如下步骤:(1)前视声纳图像的预处理;(2)选取动态连续变化尺度的检测基样本,利用滤波器模型检测声纳图像目标的最佳位置;(3)根据峰值旁瓣比自适应更新滤波器模型,在更新过程中,选取动态连续变化的训练基样本来计算不同尺度的滤波器模型,最终实现前视声纳水下目标跟踪。对采集的水下目标原始数据进行实验结果分析,验证提出的基于改进核相关滤波算法对前视声纳水下目标跟踪具有较高的跟踪精度,并且当目标尺度发生变化、目标中途消失又出现等情况仍然具有一定的有效性和适应性。

Patent Agency Ranking