用于历史数据缺失电场的超短期光伏功率预测方法

    公开(公告)号:CN110766212A

    公开(公告)日:2020-02-07

    申请号:CN201910975574.3

    申请日:2019-10-15

    Abstract: 本发明提供的是一种用于历史数据缺失电场的超短期光伏功率预测方法。(1)选取具有充足历史数据的光伏电场A作为源域,构建源域训练集、验证集及测试集,在电场B的历史光伏功率数据上构建目标域训练集、验证集及测试集;(2)利用源域训练集及验证集数据分别对MLP预测神经网络进行初次训练和修正训练;(3)对步骤(2)得到的网络的结构进行改造;(4)利用源域训练集、目标域的训练集和验证集重新训练网络,得到服务于电场B光伏电场的功率预测网络;(5)将电场B的历史数据和实时监测数据输入步骤(4)得到的最终预测网络,预测网络输出电场B下一时刻的预测结果。本发明解决了新建光伏无法有效实施基于历史数据的功率预测问题。

    用于历史数据缺失电场的超短期光伏功率预测方法

    公开(公告)号:CN110766212B

    公开(公告)日:2023-01-03

    申请号:CN201910975574.3

    申请日:2019-10-15

    Abstract: 本发明提供的是一种用于历史数据缺失电场的超短期光伏功率预测方法。(1)选取具有充足历史数据的光伏电场A作为源域,构建源域训练集、验证集及测试集,在电场B的历史光伏功率数据上构建目标域训练集、验证集及测试集;(2)利用源域训练集及验证集数据分别对MLP预测神经网络进行初次训练和修正训练;(3)对步骤(2)得到的网络的结构进行改造;(4)利用源域训练集、目标域的训练集和验证集重新训练网络,得到服务于电场B光伏电场的功率预测网络;(5)将电场B的历史数据和实时监测数据输入步骤(4)得到的最终预测网络,预测网络输出电场B下一时刻的预测结果。本发明解决了新建光伏无法有效实施基于历史数据的功率预测问题。

Patent Agency Ranking