一种基于优选动态几何特征的可解释步态识别方法

    公开(公告)号:CN116503943B

    公开(公告)日:2024-06-25

    申请号:CN202310447810.0

    申请日:2023-04-24

    Abstract: 本发明涉及一种基于优选动态几何特征的可解释步态识别方法,以发现对识别行人身份起到重要作用的人体局部区域。本发明包括:从采集到的RGB步态序列中,提取步态序列的二值轮廓图;对步态序列进行人体关键点提取,根据人体骨骼的刚性结构对获得的关键点进行扩充;基于训练好的关键区域推断模型,对人体关键点的位置进行几何结构限制区域内的动态优化,推断并选择出人体重要局部区域;通过端到端的联合训练关键区域推断模型和深度步态识别模型,得到对步态识别最有利的人体关键部位。实施本发明,在保证步态识别精度的同时,能很好的解释人体的哪些局部区域在步态识别任务中是关键的,为任何深度步态识别模型提供可解释性的特征。

    一种基于优选动态几何特征的可解释步态识别方法

    公开(公告)号:CN116503943A

    公开(公告)日:2023-07-28

    申请号:CN202310447810.0

    申请日:2023-04-24

    Abstract: 本发明涉及一种基于优选动态几何特征的可解释步态识别方法,以发现对识别行人身份起到重要作用的人体局部区域。本发明包括:从采集到的RGB步态序列中,提取步态序列的二值轮廓图;对步态序列进行人体关键点提取,根据人体骨骼的刚性结构对获得的关键点进行扩充;基于训练好的关键区域推断模型,对人体关键点的位置进行几何结构限制区域内的动态优化,推断并选择出人体重要局部区域;通过端到端的联合训练关键区域推断模型和深度步态识别模型,得到对步态识别最有利的人体关键部位。实施本发明,在保证步态识别精度的同时,能很好的解释人体的哪些局部区域在步态识别任务中是关键的,为任何深度步态识别模型提供可解释性的特征。

Patent Agency Ranking