一种利用元数据生成音频预测未知异常的异音检测方法

    公开(公告)号:CN118053450A

    公开(公告)日:2024-05-17

    申请号:CN202410266452.8

    申请日:2024-03-08

    Abstract: 本发明为一种利用元数据生成音频预测未知异常的异音检测方法,解决了目标机器异常音频样本对现有异音检测模型不可见导致异音检测模型无法选择超参数,异音检测系统性能受限的问题。本发明提供的异常样本预测策略借助音频特征和元数据信息特征对齐构建基于元数据信息的音频生成方法,进而预测未知的目标机器类型异常声音特性,为现有异常声音检测方法在First‑Shot场景下生成了可用于模型训练的目标机器预测声音样本,借助于预测声音样本,异音检测方法能在复杂的异常声音检测现实场景中确定最优模型,提升异音检测方法的性能和通用性。同时,本发明构建的统一的样本生成模型,缓解了现实场景中异常样本稀缺问题,有效降低了异音检测方法的工业化部署难度。

    一种基于元数据对比学习预训练的两阶段异音检测方法

    公开(公告)号:CN116230012B

    公开(公告)日:2023-08-08

    申请号:CN202310177110.4

    申请日:2023-02-28

    Abstract: 本发明提出了一种基于元数据对比学习预训练的两阶段异音检测方法,属于声音检测领域,解决了现有单阶段异音检测方法对声音信号与其对应元数据信息匹配关系发掘程度不高,难以区分不同元数据信息下声音信号差异的问题。本发明提供的两阶段异音检测方法包含元数据对比学习预训练和自监督微调两个阶段,元数据对比学习预训练阶段加强了相同元数据信息下的声音信号关联,放大了不同元数据信息下声音信号的距离,学习到了能够根据元数据信息区分不同声音信号的能力;自监督微调部分在元数据对比学习获得的预训练参数基础上,进行优化微调,进一步提升了对不同元数据信息下声音信号的区别能力,进而提升了异音检测方法的性能表现与稳定性。

    一种利用元数据生成音频预测未知异常的异音检测方法

    公开(公告)号:CN118053450B

    公开(公告)日:2025-03-07

    申请号:CN202410266452.8

    申请日:2024-03-08

    Abstract: 本发明为一种利用元数据生成音频预测未知异常的异音检测方法,解决了目标机器异常音频样本对现有异音检测模型不可见导致异音检测模型无法选择超参数,异音检测系统性能受限的问题。本发明提供的异常样本预测策略借助音频特征和元数据信息特征对齐构建基于元数据信息的音频生成方法,进而预测未知的目标机器类型异常声音特性,为现有异常声音检测方法在First‑Shot场景下生成了可用于模型训练的目标机器预测声音样本,借助于预测声音样本,异音检测方法能在复杂的异常声音检测现实场景中确定最优模型,提升异音检测方法的性能和通用性。同时,本发明构建的统一的样本生成模型,缓解了现实场景中异常样本稀缺问题,有效降低了异音检测方法的工业化部署难度。

    一种基于音频时序信息加权的频域特征表示异音检测方法

    公开(公告)号:CN116230015B

    公开(公告)日:2023-08-08

    申请号:CN202310240262.4

    申请日:2023-03-14

    Abstract: 本发明提出一种基于音频时序信息加权的频域特征表示异音检测方法,能够有效区分正常信息和异常信息,提升异常声音检测的稳定性和对不同机器的适应性。本发明通过对原始音频信号获取Log‑Mel谱频域特征,并在时间维度上对其应用全局加权排序池化,得到音频信号的基于音频时序信息加权的频域特征表示,解决了对稳定音频信号和非稳定音频信号的平衡问题。并基于音频时序信息加权的频域特征表示,针对不同机器类型,根据最佳检测性能,找到全局加权排序池化最合适的池化参数,实现用于异常声音检测的更鲁棒性的音频特征表示。

    一种基于音频时序信息加权的频域特征表示异音检测方法

    公开(公告)号:CN116230015A

    公开(公告)日:2023-06-06

    申请号:CN202310240262.4

    申请日:2023-03-14

    Abstract: 本发明提出一种基于音频时序信息加权的频域特征表示异音检测方法,能够有效区分正常信息和异常信息,提升异常声音检测的稳定性和对不同机器的适应性。本发明通过对原始音频信号获取Log‑Mel谱频域特征,并在时间维度上对其应用全局加权排序池化,得到音频信号的基于音频时序信息加权的频域特征表示,解决了对稳定音频信号和非稳定音频信号的平衡问题。并基于音频时序信息加权的频域特征表示,针对不同机器类型,根据最佳检测性能,找到全局加权排序池化最合适的池化参数,实现用于异常声音检测的更鲁棒性的音频特征表示。

    一种基于元数据对比学习预训练的两阶段异音检测方法

    公开(公告)号:CN116230012A

    公开(公告)日:2023-06-06

    申请号:CN202310177110.4

    申请日:2023-02-28

    Abstract: 本发明提出了一种基于元数据对比学习预训练的两阶段异音检测方法,属于声音检测领域,解决了现有单阶段异音检测方法对声音信号与其对应元数据信息匹配关系发掘程度不高,难以区分不同元数据信息下声音信号差异的问题。本发明提供的两阶段异音检测方法包含元数据对比学习预训练和自监督微调两个阶段,元数据对比学习预训练阶段加强了相同元数据信息下的声音信号关联,放大了不同元数据信息下声音信号的距离,学习到了能够根据元数据信息区分不同声音信号的能力;自监督微调部分在元数据对比学习获得的预训练参数基础上,进行优化微调,进一步提升了对不同元数据信息下声音信号的区别能力,进而提升了异音检测方法的性能表现与稳定性。

Patent Agency Ranking