-
公开(公告)号:CN113110532A
公开(公告)日:2021-07-13
申请号:CN202110500855.0
申请日:2021-05-08
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 基于辅助动态系统的可底栖式AUV自适应终端滑模轨迹跟踪控制方法,本发明涉及可底栖式AUV自适应终端滑模轨迹跟踪控制方法。本发明的目的是为了解决现有方法对可底栖式AUV的轨迹跟踪控制精度低的问题。基于辅助动态系统的可底栖式AUV自适应终端滑模轨迹跟踪控制方法过程为:步骤一、建立AUV运动学方程;步骤二、基于步骤一建立的AUV运动学方程,定义位姿误差模型变量;步骤三、基于步骤一建立的AUV运动学方程和步骤二定义的位姿误差模型变量,建立AUV误差模型;步骤四、设计控制律控制步骤三建立的AUV误差模型。本发明用于AUV轨迹跟踪控制领域。
-
公开(公告)号:CN113110532B
公开(公告)日:2022-11-04
申请号:CN202110500855.0
申请日:2021-05-08
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 基于辅助动态系统的可底栖式AUV自适应终端滑模轨迹跟踪控制方法,本发明涉及可底栖式AUV自适应终端滑模轨迹跟踪控制方法。本发明的目的是为了解决现有方法对可底栖式AUV的轨迹跟踪控制精度低的问题。基于辅助动态系统的可底栖式AUV自适应终端滑模轨迹跟踪控制方法过程为:步骤一、建立AUV运动学方程;步骤二、基于步骤一建立的AUV运动学方程,定义位姿误差模型变量;步骤三、基于步骤一建立的AUV运动学方程和步骤二定义的位姿误差模型变量,建立AUV误差模型;步骤四、设计控制律控制步骤三建立的AUV误差模型。本发明用于AUV轨迹跟踪控制领域。
-
公开(公告)号:CN111736617B
公开(公告)日:2022-11-04
申请号:CN202010526631.2
申请日:2020-06-09
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 一种基于速度观测器的可底栖式水下机器人预设性能轨迹跟踪控制方法,属于水下机器人控制技术领域。为了解决现有的AUV控制方法没有比较全面的考虑影响控制精度的因素导致控制精度比较低的问题,以及现有的预设性能控制方法很难通过搭载的传感器设备测量所需的状态信息导致控制效果不理想的问题,本发明设计控制器与状态观测器使可底栖式水下机器人在存在建模不确定性、海流扰动与推进器故障的情况下,其位置与姿态量仍然能够跟踪期望值,并使跟踪误差具有预先给定的动态性能及稳态响应情况;本发明还引入一种可预设收敛时间的性能函数,利用该性能函数可以在预期时间内实现预定的轨迹跟踪性能。主要用于可底栖式水下机器人的轨迹跟踪控制。
-
公开(公告)号:CN113238567B
公开(公告)日:2021-12-10
申请号:CN202110482857.1
申请日:2021-04-30
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 一种基于扩展状态观测器的底栖式AUV弱抖振积分滑模点镇定控制方法,涉及水下航行器控制领域,针对现有技术中的控制方法存在控制精度有限,调整速度慢的问题,包括:步骤一:建立可底栖式AUV运动方程,并根据可底栖式AUV运动方程构建可底栖式AUV误差模型;步骤二:根据可底栖式AUV误差模型构建可底栖式AUV点镇定跟踪误差模型;步骤三:设计自适应超螺旋扩展状态观测器;步骤四:构建二阶无抖振非奇异积分终端滑模面;步骤五:根据可底栖式AUV点镇定跟踪误差模型、自适应超螺旋扩展状态观测器和二阶无抖振非奇异积分终端滑模面设计控制器。本申请能在有限时间内收敛到稳定状态,且位姿误差收敛到零后能保持较好的稳定性,收敛速度快。
-
公开(公告)号:CN112904872B
公开(公告)日:2021-12-10
申请号:CN202110069579.7
申请日:2021-01-19
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 基于扰动逼近的底栖式AUV固定时间快速轨迹跟踪控制方法,涉及水下航行器控制领域,针对现有技术中难以实现快速高精度轨迹跟踪控制的问题,包括步骤一:建立可底栖式AUV运动方程,并根据可底栖式AUV运动方程构建轨迹跟踪误差模型;步骤二:构建快速固定时间收敛系统,并根据快速固定时间收敛系统及轨迹跟踪误差模型设计观测器,并根据观测器估计扰动集总项;步骤三:基于快速固定时间收敛系统设计固定时间滑模面;步骤四:利用快速固定时间收敛系统、固定时间滑模面及扰动集总项设计控制器。采用本申请可以实现快速高精度轨迹跟踪控制。
-
公开(公告)号:CN113238567A
公开(公告)日:2021-08-10
申请号:CN202110482857.1
申请日:2021-04-30
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 一种基于扩展状态观测器的底栖式AUV弱抖振积分滑模点镇定控制方法,涉及水下航行器控制领域,针对现有技术中的控制方法存在控制精度有限,调整速度慢的问题,包括:步骤一:建立可底栖式AUV运动方程,并根据可底栖式AUV运动方程构建可底栖式AUV误差模型;步骤二:根据可底栖式AUV误差模型构建可底栖式AUV点镇定跟踪误差模型;步骤三:设计自适应超螺旋扩展状态观测器;步骤四:构建二阶无抖振非奇异积分终端滑模面;步骤五:根据可底栖式AUV点镇定跟踪误差模型、自适应超螺旋扩展状态观测器和二阶无抖振非奇异积分终端滑模面设计控制器。本申请能在有限时间内收敛到稳定状态,且位姿误差收敛到零后能保持较好的稳定性,收敛速度快。
-
公开(公告)号:CN112904872A
公开(公告)日:2021-06-04
申请号:CN202110069579.7
申请日:2021-01-19
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 基于扰动逼近的底栖式AUV固定时间快速轨迹跟踪控制方法,涉及水下航行器控制领域,针对现有技术中难以实现快速高精度轨迹跟踪控制的问题,包括步骤一:建立可底栖式AUV运动方程,并根据可底栖式AUV运动方程构建轨迹跟踪误差模型;步骤二:构建快速固定时间收敛系统,并根据快速固定时间收敛系统及轨迹跟踪误差模型设计观测器,并根据观测器估计扰动集总项;步骤三:基于快速固定时间收敛系统设计固定时间滑模面;步骤四:利用快速固定时间收敛系统、固定时间滑模面及扰动集总项设计控制器。采用本申请可以实现快速高精度轨迹跟踪控制。
-
公开(公告)号:CN111736617A
公开(公告)日:2020-10-02
申请号:CN202010526631.2
申请日:2020-06-09
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 一种基于速度观测器的可底栖式水下机器人预设性能轨迹跟踪控制方法,属于水下机器人控制技术领域。为了解决现有的AUV控制方法没有比较全面的考虑影响控制精度的因素导致控制精度比较低的问题,以及现有的预设性能控制方法很难通过搭载的传感器设备测量所需的状态信息导致控制效果不理想的问题,本发明设计控制器与状态观测器使可底栖式水下机器人在存在建模不确定性、海流扰动与推进器故障的情况下,其位置与姿态量仍然能够跟踪期望值,并使跟踪误差具有预先给定的动态性能及稳态响应情况;本发明还引入一种可预设收敛时间的性能函数,利用该性能函数可以在预期时间内实现预定的轨迹跟踪性能。主要用于可底栖式水下机器人的轨迹跟踪控制。
-
-
-
-
-
-
-