基于改进Glasius仿生神经网络的静态目标搜索方法与装置

    公开(公告)号:CN116520861A

    公开(公告)日:2023-08-01

    申请号:CN202310492834.8

    申请日:2023-05-04

    Abstract: 本发明提出了基于改进Glasius仿生神经网络的静态目标搜索方法与装置,属于Glasius仿生神经网络技术领域,尤其涉及水下自主航行器的路径规划。解决了现有Glasius仿生神经网络,由于神经元刺激信号的时延和衰减的作用,而可能受到局部最优解的影响,导致全局搜索能力较差,目标搜索性能不理想的问题。所述基于改进Glasius仿生神经网络的静态目标搜索方法,采用改进Glasius仿生神经网络,根据所述先验信息、基础先验目标概率图以及初始结合概率图MAP0,进行迭代计算,通过时域滚动优化过程执行静态目标搜索任务。它主要用于水下自主航行器的路径规划。

    基于改进Glasius仿生神经网络的静态目标搜索方法与装置

    公开(公告)号:CN116520861B

    公开(公告)日:2024-04-12

    申请号:CN202310492834.8

    申请日:2023-05-04

    Abstract: 本发明提出了基于改进Glasius仿生神经网络的静态目标搜索方法与装置,属于Glasius仿生神经网络技术领域,尤其涉及水下自主航行器的路径规划。解决了现有Glasius仿生神经网络,由于神经元刺激信号的时延和衰减的作用,而可能受到局部最优解的影响,导致全局搜索能力较差,目标搜索性能不理想的问题。所述基于改进Glasius仿生神经网络的静态目标搜索方法,采用改进Glasius仿生神经网络,根据所述先验信息、基础先验目标概率图以及初始结合概率图MAP0,进行迭代计算,通过时域滚动优化过程执行静态目标搜索任务。它主要用于水下自主航行器的路径规划。

Patent Agency Ranking