-
公开(公告)号:CN105405118B
公开(公告)日:2017-11-21
申请号:CN201510676957.2
申请日:2015-10-16
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于量子衍生混合蛙跳的水下声纳图像目标检测方法。包括(1)适应度函数;(2)量子进化更新;(3)模糊隶属度矩阵结合空间信息去除孤立区;(4)对检测结果进行基于信息论的客观定量评价分析。本发明利用量子比特对青蛙种群进行编码,并结合类内和类间信息的适应度函数来更为准确地评价青蛙位置的好坏;采用量子进化更新方式,利用相位角编码,更新子种群中最坏位置的青蛙;根据模糊隶属度矩阵结合空间信息去除孤立区的方法获得更精确的检测结果;提出分割布局噪声熵对最终检测结果进行定量分析。本发明能更为准确地完成水下声纳图像目标检测,有一定的检测精度和有效性,具有较高的适应性。
-
公开(公告)号:CN105405118A
公开(公告)日:2016-03-16
申请号:CN201510676957.2
申请日:2015-10-16
Applicant: 哈尔滨工程大学
IPC: G06T7/00
CPC classification number: G06T7/0012
Abstract: 本发明提供的是一种基于量子衍生混合蛙跳的水下声纳图像目标检测方法。包括(1)适应度函数;(2)量子进化更新;(3)模糊隶属度矩阵结合空间信息去除孤立区;(4)对检测结果进行基于信息论的客观定量评价分析。本发明利用量子比特对青蛙种群进行编码,并结合类内和类间信息的适应度函数来更为准确地评价青蛙位置的好坏;采用量子进化更新方式,利用相位角编码,更新子种群中最坏位置的青蛙;根据模糊隶属度矩阵结合空间信息去除孤立区的方法获得更精确的检测结果;提出分割布局噪声熵对最终检测结果进行定量分析。本发明能更为准确地完成水下声纳图像目标检测,有一定的检测精度和有效性,具有较高的适应性。
-