面向联邦学习数据投毒攻击的防御方法及装置

    公开(公告)号:CN113965359B

    公开(公告)日:2023-08-04

    申请号:CN202111152694.7

    申请日:2021-09-29

    Abstract: 本发明公开了一种面向联邦学习数据投毒攻击的防御方法及装置,方法包括:每个客户端使用本地数据训练模型参数;每个客户端将本地模型参数上传给服务器,服务器接收到所有的模型参数;服务器从中计算出一个用于比较的参考基准u,则对于任意的两个局部模型wa和wb,计算它们相对于参考基准u的相似度;采用内部投票的方法判断一个局部模型是否为恶意;根据每个局部模型所得的票数,计算每个局部模型的可信度;基于可信度的模型加权聚合,得到最终的全局模型,基于最终的全局模型实现数据投毒攻击的防御。本发明中,恶意客户端的模型会被赋予较低权重,在加权聚合时削弱它对全局模型的影响,从而实现针对数据投毒攻击的防御。

    一种联邦学习模型投毒防御方法、终端及存储介质

    公开(公告)号:CN115456192A

    公开(公告)日:2022-12-09

    申请号:CN202211000977.4

    申请日:2022-08-19

    Abstract: 本发明公开了一种联邦学习模型投毒防御方法、终端及存储介质,方法包括:根据各局部模型增量的范数及对应的数据集选择匹配的裁剪阈值,并根据选择的裁剪阈值对对应的局部模型增量进行自适应裁剪;根据裁剪后的局部模型增量确定当前全局模型增量的符号特征,并根据确定的当前全局模型增量的符号特征计算裁剪后的局部模型对应的选择系数;根据计算的选择系数将各裁剪后的局部模型进行选择性聚合,得到全局模型;本发明可以有效地防御标签翻转缩放攻击、符号翻转攻击、最小化最大距离攻击等模型投毒攻击手段,能够帮助中心服务器在不收集客户端原始数据、不加剧客户端本地计算量的情况下完成对本地模型的聚合,增强联邦学习框架的可靠性和鲁棒性。

    面向联邦学习数据投毒攻击的防御方法及装置

    公开(公告)号:CN113965359A

    公开(公告)日:2022-01-21

    申请号:CN202111152694.7

    申请日:2021-09-29

    Abstract: 本发明公开了一种面向联邦学习数据投毒攻击的防御方法及装置,方法包括:每个客户端使用本地数据训练模型参数;每个客户端将本地模型参数上传给服务器,服务器接收到所有的模型参数;服务器从中计算出一个用于比较的参考基准u,则对于任意的两个局部模型wa和wb,计算它们相对于参考基准u的相似度;采用内部投票的方法判断一个局部模型是否为恶意;根据每个局部模型所得的票数,计算每个局部模型的可信度;基于可信度的模型加权聚合,得到最终的全局模型,基于最终的全局模型实现数据投毒攻击的防御。本发明中,恶意客户端的模型会被赋予较低权重,在加权聚合时削弱它对全局模型的影响,从而实现针对数据投毒攻击的防御。

Patent Agency Ranking