-
公开(公告)号:CN114816901B
公开(公告)日:2025-03-18
申请号:CN202210187810.7
申请日:2022-02-28
Applicant: 南开大学
IPC: G06F11/30 , G06F18/2433 , G06N3/0455 , G06N3/08
Abstract: 本申请提出了一种通过AI的方式对软件变更后的健康状态进行评估的方法,涉及数据分析技术领域,其中,该方法包括:获取待检测的KPI时间序列,并对获取到的KPI时间序列进行中位差检验;若检测到某个数据点高于中位差检验的阈值,则对KPI时间序列的曲线进行无监督异常检测,得到每个点对应的异常分数;将异常分数作为极值理论的输入来确定动态阈值,根据曲线上待检测点的异常分数与此点对应阈值的比较来判断曲线是否有异常点;若曲线有异常点,使用空间回归算法对曲线进行评估,判断异常的种类。采用上述方案的本申请能够快速、准确判断异常是否是由软件变更导致的,从而完成对服务变更的评估,极大提高了服务变更评估的效率。
-
公开(公告)号:CN114816901A
公开(公告)日:2022-07-29
申请号:CN202210187810.7
申请日:2022-02-28
Applicant: 南开大学
Abstract: 本申请提出了一种通过AI的方式对软件变更后的健康状态进行评估的方法,涉及数据分析技术领域,其中,该方法包括:获取待检测的KPI时间序列,并对获取到的KPI时间序列进行中位差检验;若检测到某个数据点高于中位差检验的阈值,则对KPI时间序列的曲线进行无监督异常检测,得到每个点对应的异常分数;将异常分数作为极值理论的输入来确定动态阈值,根据曲线上待检测点的异常分数与此点对应阈值的比较来判断曲线是否有异常点;若曲线有异常点,使用空间回归算法对曲线进行评估,判断异常的种类。采用上述方案的本申请能够快速、准确判断异常是否是由软件变更导致的,从而完成对服务变更的评估,极大提高了服务变更评估的效率。
-