-
公开(公告)号:CN113609338A
公开(公告)日:2021-11-05
申请号:CN202110845917.1
申请日:2021-07-26
Applicant: 南京财经大学
IPC: G06F16/901 , G06K9/62 , G06F17/16
Abstract: 本发明提供了一种基于意见演化的图嵌入方法及系统,所述方法包括:将带有稀疏属性和标签的网络中的节点,通过全局共享的可训练权重矩阵映射到低维空间;通过邻接矩阵计算图上所有节点和邻居的欧式距离;设置超参数,根据超参数和欧氏距离的比较,让图上节点形成置信邻居的集合;设置新的节点信息聚合规则,邻居聚合权重由其欧式距离归一化所得;通过每一轮置信邻居更加严格的要求,让信息聚合达到稳定状态。本发明利用矩阵计算,让图上求距离的操作切实可行,通过欧氏距离为邻居分配权重,增加模型的可解释性,通过新的信息聚合规则以及置信邻居的设置,来确定图上节点的感受野,解决了需要手动堆叠隐藏层的缺陷。
-
公开(公告)号:CN113886715A
公开(公告)日:2022-01-04
申请号:CN202111285010.0
申请日:2021-11-01
Applicant: 南京财经大学
IPC: G06F16/9536 , G06F16/901 , G06N3/04 , G06N3/08 , G06Q50/00
Abstract: 本发明涉及一种好友推荐方法及系统。所述好友推荐方法包括:根据现有的用户关系构建有向图,所述有向图的节点表征用户,获取每个节点的节点表征向量;根据节点的邻接关系,获取每个节点的PageRank中心性;根据节点的PageRank中心性和节点表征向量预测用户成为好友的概率对用户进行好友推荐。本申请提供的好友推荐方法可以很好的解决传统链路预测方法在节点表征过程中只考虑了低阶结构的缺陷,可以对表示用户的节点进行链路预测从而实现好友推荐的功能。
-