基于帧间差异与卷积神经网络融合的船舶视频检测方法

    公开(公告)号:CN108229319A

    公开(公告)日:2018-06-29

    申请号:CN201711226281.2

    申请日:2017-11-29

    Applicant: 南京大学

    Abstract: 基于帧间差异与卷积神经网络融合的船舶视频检测方法,包括四个部分:对视频作预处理、获取每一帧的ROI区域并提取浅层特征、用修改的VGG16网络获取每一帧图的高层特征、预测每一帧ROI区域船舶显著图并提取船舶目标。本发明充分利用了视频前后帧之间的联系,减小了背景的干扰,准确定位运动船舶,获得了船舶运动的区域,相比于只利用低层特征的船舶图像显著性检测,既能够直接应用于船舶视频的检测,又减少了检测船舶不全的情况,对复杂内河运动船舶场景的适应性更强,检测精度更高,解决了内河船舶目标显著性检测不准确的问题,具有极高的实际应用价值。

    高斯背景建模与循环神经网络相结合的车型分类方法

    公开(公告)号:CN107133974B

    公开(公告)日:2019-08-27

    申请号:CN201710409429.X

    申请日:2017-06-02

    Applicant: 南京大学

    Abstract: 高斯背景建模与循环神经网络相结合的视频车型分类方法,通过使用混合高斯模型提取运动目标,并将运动目标送循环神经网络提取特征,根据循环神经网络输出的向量判断目标是否为车辆以及车辆类型.本发明提出了将RNN作为高斯混合模型的后续运算,以达到车型分类的目的,首先利用高斯混合模型对视频序列进行背景建模,检测出运动目标区域,利用CNN对检测出的目标区域进行分类,将分类结果输入至RNN网络中得到最后的分类来判别是客车、货车或者非车。本发明创造性的使用了高斯背景建模与循环神经网络结合的方法,该方法有较强鲁棒性,两者结合能够大大提高了车辆检测和车型识别精度。

    基于深度卷积神经网络的车辆违停逆行检测方法

    公开(公告)号:CN106874863A

    公开(公告)日:2017-06-20

    申请号:CN201710059676.1

    申请日:2017-01-24

    Applicant: 南京大学

    Abstract: 基于深度卷积神经网络的车辆违停逆行检测方法,用移动终端检测点作为道路摄像头,移动终端检测点通过摄像头获取图像信息,将深度学习引入路面事件识别并加以改进,以显著提高道路事件识别准确率。本发明利用卷积神经网络对获取的图像进行分析,将路面ROI区域划分为多个网络,构建路面—非路面识别模型,通过非路面网格反向识别高速公路非法停车、车辆逆向行驶等目标。本发明应用于路面违停检测、车辆逆行检测等非实时性任务,充分利用移动互联网的特点与优势,以低成本实现区域高覆盖率车辆违停和车辆逆行等路面事件检测。

    基于深度卷积神经网络的车辆违停逆行检测方法

    公开(公告)号:CN106874863B

    公开(公告)日:2020-02-07

    申请号:CN201710059676.1

    申请日:2017-01-24

    Applicant: 南京大学

    Abstract: 基于深度卷积神经网络的车辆违停逆行检测方法,用移动终端检测点作为道路摄像头,移动终端检测点通过摄像头获取图像信息,将深度学习引入路面事件识别并加以改进,以显著提高道路事件识别准确率。本发明利用卷积神经网络对获取的图像进行分析,将路面ROI区域划分为多个网络,构建路面—非路面识别模型,通过非路面网格反向识别高速公路非法停车、车辆逆向行驶等目标。本发明应用于路面违停检测、车辆逆行检测等非实时性任务,充分利用移动互联网的特点与优势,以低成本实现区域高覆盖率车辆违停和车辆逆行等路面事件检测。

    高斯背景建模与循环神经网络相结合的车型分类方法

    公开(公告)号:CN107133974A

    公开(公告)日:2017-09-05

    申请号:CN201710409429.X

    申请日:2017-06-02

    Applicant: 南京大学

    Abstract: 高斯背景建模与循环神经网络相结合的视频车型分类方法,通过使用混合高斯模型提取运动目标,并将运动目标送循环神经网络提取特征,根据循环神经网络输出的向量判断目标是否为车辆以及车辆类型.本发明提出了将RNN作为高斯混合模型的后续运算,以达到车型分类的目的,首先利用高斯混合模型对视频序列进行背景建模,检测出运动目标区域,利用CNN对检测出的目标区域进行分类,将分类结果输入至RNN网络中得到最后的分类来判别是客车、货车或者非车。本发明创造性的使用了高斯背景建模与循环神经网络结合的方法,该方法有较强鲁棒性,两者结合能够大大提高了车辆检测和车型识别精度。

Patent Agency Ranking