-
公开(公告)号:CN117523342A
公开(公告)日:2024-02-06
申请号:CN202410013633.X
申请日:2024-01-04
Applicant: 南京信息工程大学
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06N3/045 , G06N3/0475 , G06N3/084 , G06N3/094 , G06N3/096
Abstract: 本发明公开了一种高迁移性对抗样本生成方法、设备及介质,首先使用现有的特征级攻击方式进行攻击后生成对抗样本,该对抗样本在原模型上获得新特征作为强化方向。通过在干扰原始特征的同时,进一步强化新生成的特征,来达到提升对抗样本迁移性的目的。本发明相比于其他只干扰原始特征的特征级方法,本发明通过聚合原始特征梯度和新生成特征梯度来构建的损失函数。在干扰图像的原始特征的同时去强化新生成的特征。在迁移攻击其他模型时更加容易被攻击成为新生成的特征类别,这样可以生成更高迁移性的对抗样本。
-
公开(公告)号:CN116631043B
公开(公告)日:2023-09-22
申请号:CN202310912988.8
申请日:2023-07-25
Applicant: 南京信息工程大学
IPC: G06V40/16 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种自然对抗补丁生成方法、目标检测模型的训练方法及装置,自然对抗补丁生成方法,包括:将自然图像通过预训练好的自动编码器中的编码器进行感知压缩,得到潜在空间;利用扩散模型学习潜在空间并进行训练,得到训练好的扩散模型;从高斯分布中采样一个随机噪声,并通过训练好的扩散模型将所述随机噪声映射到潜在空间中的隐变量,得到映射隐变量,随后通过预训练好的自动编码器中的解码器对映射隐变量采样得到自然对抗补丁。本发明通过生成一种具有人们熟悉的图案和内容的自然对抗补丁,用于对目标检测器或人脸识别系统进行训练,能有效提高目标检测器或人脸识别系统的检测精度以及鲁棒性。
-
公开(公告)号:CN117523342B
公开(公告)日:2024-04-16
申请号:CN202410013633.X
申请日:2024-01-04
Applicant: 南京信息工程大学
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06N3/045 , G06N3/0475 , G06N3/084 , G06N3/094 , G06N3/096
Abstract: 本发明公开了一种高迁移性对抗样本生成方法、设备及介质,首先使用现有的特征级攻击方式进行攻击后生成对抗样本,该对抗样本在原模型上获得新特征作为强化方向。通过在干扰原始特征的同时,进一步强化新生成的特征,来达到提升对抗样本迁移性的目的。本发明相比于其他只干扰原始特征的特征级方法,本发明通过聚合原始特征梯度和新生成特征梯度来构建的损失函数。在干扰图像的原始特征的同时去强化新生成的特征。在迁移攻击其他模型时更加容易被攻击成为新生成的特征类别,这样可以生成更高迁移性的对抗样本。
-
公开(公告)号:CN116993893A
公开(公告)日:2023-11-03
申请号:CN202311250057.2
申请日:2023-09-26
Applicant: 南京信息工程大学
IPC: G06T15/04 , G06V10/774 , G06V10/82 , G06V10/80 , G06V10/764 , G06N3/084 , A63F13/75 , A63F13/837
Abstract: 本发明公开了一种抵御AI自瞄作弊的对抗贴图生成方法及装置,包括:将噪声数据集#imgabs0#输入至基于神经网络预先构建的检测器,获取神经网络检测结果;根据真实分类标签和神经网络检测结果计算损失值Loss;将损失值Loss进行反向传播,通过梯度下降法更新所述噪声图像n;重复迭代直到损失值Loss收敛输出训练好的噪声图像#imgabs1#;将训练好的噪声图像#imgabs2#转化为对抗贴图;将训练好的噪声图像#imgabs3#与游戏物品贴图文件相融合,对抗贴图与游戏地面贴图文件相融合用于抵御AI自瞄作弊;所述对抗贴图使AI自瞄作弊程序将游戏画面识别成多个玩家目标,从而降低游戏中正常游戏玩家被AI自瞄作弊程序锁定的概率;保证游戏竞技的公平性。
-
公开(公告)号:CN116993893B
公开(公告)日:2024-01-12
申请号:CN202311250057.2
申请日:2023-09-26
Applicant: 南京信息工程大学
IPC: G06T15/04 , G06V10/774 , G06V10/82 , G06V10/80 , G06V10/764 , G06N3/084 , A63F13/75 , A63F13/837
Abstract: 本发明公开了一种抵御AI自瞄作弊的对抗贴图生成方法及装置,包括:将噪声数据集输入至基于神经网络预先构建的检测器,获取神经网络检测结果;根据真实分类标签和神经网络检测结果计算损失值Loss;将损失值Loss进行反向传播,通过梯度下降法更新所述噪声图像n;重复迭代直到损失值Loss收敛输出训练好的噪声图像 ;将训练好的噪声图像转化为对抗贴图;将训练好的噪声图像 与游戏物品贴图文件相融合,对抗贴图与游戏地面贴图文件相融合用于抵御AI自瞄作弊;所述对抗贴图使AI自瞄作弊程序将游戏画面识别成多个玩家目标,从而降低游戏中正常游戏玩家被AI自
-
公开(公告)号:CN116631043A
公开(公告)日:2023-08-22
申请号:CN202310912988.8
申请日:2023-07-25
Applicant: 南京信息工程大学
IPC: G06V40/16 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种自然对抗补丁生成方法、目标检测模型的训练方法及装置,自然对抗补丁生成方法,包括:将自然图像通过预训练好的自动编码器中的编码器进行感知压缩,得到潜在空间;利用扩散模型学习潜在空间并进行训练,得到训练好的扩散模型;从高斯分布中采样一个随机噪声,并通过训练好的扩散模型将所述随机噪声映射到潜在空间中的隐变量,得到映射隐变量,随后通过预训练好的自动编码器中的解码器对映射隐变量采样得到自然对抗补丁。本发明通过生成一种具有人们熟悉的图案和内容的自然对抗补丁,用于对目标检测器或人脸识别系统进行训练,能有效提高目标检测器或人脸识别系统的检测精度以及鲁棒性。
-
-
-
-
-