一种联邦学习模型中毒重建的方法、装置、介质及设备

    公开(公告)号:CN117114146B

    公开(公告)日:2024-03-29

    申请号:CN202311007539.5

    申请日:2023-08-11

    Abstract: 本发明公开了一种联邦学习模型中毒重建的方法、装置、介质及设备,所述方法包括获取中毒的联邦学习模型;基于各客户机在训练期间的本地模型的准确率,筛选出在联邦学习模型训练期间中毒的客户机,删除联邦学习模型中由中毒的客户机聚合得到的局部模型,将中毒的客户机作为恶意节点、未中毒的客户机作为诚实节点,将恶意节点从初始DAG网络中移除,得到第二DAG网络;基于第二DAG网络中各诚实节点的本地模型,逐轮聚合各诚实节点的本地模型,得到联邦学习模型的最新全局模型,完成联邦学习模型中毒重建。本发明能够快速剔除恶意节点,将已有的阶段训练成果加入到新一轮训练中,提高联邦学习的训练效率和抗攻击能力。

    一种联邦学习模型中毒重建的方法、装置、介质及设备

    公开(公告)号:CN117114146A

    公开(公告)日:2023-11-24

    申请号:CN202311007539.5

    申请日:2023-08-11

    Abstract: 本发明公开了一种联邦学习模型中毒重建的方法、装置、介质及设备,所述方法包括获取中毒的联邦学习模型;基于各客户机在训练期间的本地模型的准确率,筛选出在联邦学习模型训练期间中毒的客户机,删除联邦学习模型中由中毒的客户机聚合得到的局部模型,将中毒的客户机作为恶意节点、未中毒的客户机作为诚实节点,将恶意节点从初始DAG网络中移除,得到第二DAG网络;基于第二DAG网络中各诚实节点的本地模型,逐轮聚合各诚实节点的本地模型,得到联邦学习模型的最新全局模型,完成联邦学习模型中毒重建。本发明能够快速剔除恶意节点,将已有的阶段训练成果加入到新一轮训练中,提高联邦学习的训练效率和抗攻击能力。

Patent Agency Ranking