基于深度学习的柑橘类果实采摘定位方法、系统及设备

    公开(公告)号:CN116645498A

    公开(公告)日:2023-08-25

    申请号:CN202310372669.2

    申请日:2023-04-10

    Abstract: 本发明公开了一种基于深度学习的柑橘类果实采摘定位方法、系统及设备,包括:利用目标检测模型对摄像头拍摄的场景进行果实检测;基于果实检测结果对拍摄场景进行近景、远景场景的判定;对远景场景的果实进行聚类算法,实现镜头由远景场景向近景场景的转换;利用先验法,获取果实与枝条的相对位置;对近景场景内与果实相连接的枝条通过改进的实例分割算法进行分割;根据果实检测结果、果实与枝条的相对位置和枝条分割结果,通过采摘点定位算法,得到果实采摘点的坐标,并控制机械臂完成果实的自动化采摘。本发明通过添加图像亮度、果叶长势先验改进SparseInst算法的IAM部分,让聚合实例特征的位置准确聚焦于目标枝条,提高分割算法的准确性与实时性。

    一种高准确率的果实产量估算方法、系统及设备

    公开(公告)号:CN116597195A

    公开(公告)日:2023-08-15

    申请号:CN202310372198.5

    申请日:2023-04-10

    Abstract: 本发明公开了一种高准确率的果实产量估算方法、系统及设备,包括:S1、采集果实种植区域中的远景图像以及同一区域的近景图像,并将所述远景图像和近景图像进行图像数据扩充,以扩增图像数据的数量和多样性;S2、将所述远景图像和近景图像输入至预先设立的产量估算网络模型中,学习远景图像和近景图像的信息关联性,得到果实的产量估算值;所述产量估算模型是使用改进的YOLOv5检测模型;S3、将所述果实的产量估算值输入到预先设立的专家系统中进行修正,得到精确的产量估算结果。本发明通过从远近景产量估算结合的角度入手,考虑到局部产量和全局产量存在的联系,通过学习其中的关联性来提高了产量预估的准确性。

Patent Agency Ranking