-
公开(公告)号:CN115189949B
公开(公告)日:2023-06-16
申请号:CN202210814018.X
申请日:2022-07-11
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种基于全局信息的网络安全控制关键节点识别方法,该方法包括:获取指挥控制网络关键节点数据集;构建指挥控制网络关键节点识别模型,包括静态背景关键节点识别模型和攻击背景关键节点识别模型;对指挥控制网络进行状态检测,如果检测到网络攻击或者网络拓扑变化,指挥控制网络处于攻击背景,否则为静态背景;在静态背景下,利用静态背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第一关键节点识别结果;在攻击背景下,利用攻击背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第二关键节点识别结果。本发明在静态背景和动态攻击背景下,实现了高准确性低复杂度的指挥控制网络关键节点识别。
-
公开(公告)号:CN115455258B
公开(公告)日:2023-04-18
申请号:CN202211118012.5
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: G06F16/906 , G06F16/901 , G06F18/241 , G06F18/2415 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08 , H04L9/40 , H04L47/2441 , H04L41/14 , H04L41/16
Abstract: 本发明公开了一种网络空间语言描述与分析方法及装置。所述方法包括:将原始流量数据处理为网络流和字节数据,将其构建为异构图,提取异构图的邻接矩阵、度矩阵以及特征矩阵,经卷积码模型处理后,得到全局嵌入数据,利用编码器对全局嵌入数据进行编码,得到网络流量数据的特征信息,并基于此进行分类,得到网络流分类结果信息。本发明可用于网络空间作战场景中,解决由于多变场景带来的方法适用性差、自动化程度低的问题。
-
公开(公告)号:CN115225373B
公开(公告)日:2023-04-07
申请号:CN202210844980.8
申请日:2022-07-18
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: H04L9/40
Abstract: 本发明公开了一种信息不完备条件下的网络空间安全态势表达方法及装置,该方法包括:从网络节点采集四模态缺省流量数据向量,利用深度多模态编码器,进行数据融合,得到联合特征向量集;对每个网络节点的联合特征向量进行处理,得到态势影响因子信息,进而得到网络节点的安全态势值;利用预设的网络整体安全态势模型,计算得到网络整体安全态势值;利用关联规则挖掘算法模型,得到网络漏洞预测信息。本发明通过深度多模态编码器,解决了信息不完备条件下部分流量特征数据缺省的问题,提高了态势计算及表达的效率,通过关联规则挖掘算法更好地识别未知漏洞,提高态势预测的准确度。
-
公开(公告)号:CN115455408A
公开(公告)日:2022-12-09
申请号:CN202211117994.6
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种网络空间推演与安全评估方法及装置,该方法通过将网络流处理为网络流图像,把传统网络流分类重新表述为图像分类;通过将具有注意力机制的卷积神经网络应用于此图像分类,增强了模型决策的视觉解释性;通过采用多任务分支网络模型同时预测网络流的二分类输出和多分类输出,利用学习到的特征,二分类可检测良性流或攻击流,多分类可预测具体的网络流入侵类别,提高了多分类任务的性能,解决分类不平衡、准确性较差问题。可见,通过结合注意力机制和多任务学习策略,在提升网络入侵检测性能的同时,实现了神经网络分类的透明性和解释性。
-
公开(公告)号:CN115189949A
公开(公告)日:2022-10-14
申请号:CN202210814018.X
申请日:2022-07-11
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种基于全局信息的网络安全控制关键节点识别方法,该方法包括:获取指挥控制网络关键节点数据集;构建指挥控制网络关键节点识别模型,包括静态背景关键节点识别模型和攻击背景关键节点识别模型;对指挥控制网络进行状态检测,如果检测到网络攻击或者网络拓扑变化,指挥控制网络处于攻击背景,否则为静态背景;在静态背景下,利用静态背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第一关键节点识别结果;在攻击背景下,利用攻击背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第二关键节点识别结果。本发明在静态背景和动态攻击背景下,实现了高准确性低复杂度的指挥控制网络关键节点识别。
-
公开(公告)号:CN115455258A
公开(公告)日:2022-12-09
申请号:CN202211118012.5
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: G06F16/906 , G06F16/901 , G06K9/62 , G06N3/04 , G06N3/08 , H04L9/40 , H04L47/2441 , H04L41/14 , H04L41/16
Abstract: 本发明公开了一种网络空间语言描述与分析方法及装置。所述方法包括:将原始流量数据处理为网络流和字节数据,将其构建为异构图,提取异构图的邻接矩阵、度矩阵以及特征矩阵,经卷积码模型处理后,得到全局嵌入数据,利用编码器对全局嵌入数据进行编码,得到网络流量数据的特征信息,并基于此进行分类,得到网络流分类结果信息。本发明可用于网络空间作战场景中,解决由于多变场景带来的方法适用性差、自动化程度低的问题。
-
公开(公告)号:CN116484363A
公开(公告)日:2023-07-25
申请号:CN202211391970.X
申请日:2022-11-08
Applicant: 北京邮电大学
IPC: G06F21/55 , G06F18/241 , G06N3/042
Abstract: 本发明公开了一种基于双域图卷积神经网络的内部威胁异常检测方法,包括如下步骤:S1、基于用户之间的交互信息构建始邻接矩阵,根据原始特征矩阵和结构信息,通过加权特征相似度函数构建特征域的邻接矩阵和特征矩阵;S2、分别通过拓扑域卷积和特征域卷操作,在拓扑域和特征域上传播节点特征,以学习相应的图嵌入;S3、根据从拓扑域和特征域中提取的图嵌入,对用户行为和操作进行矢量化,利用注意力机制来学习这两个图嵌入中每个节点的重要性权重,并自适应地传播,生成最终的节点嵌入。本发明在传统的图卷积神经网络的基础上,提出双域图卷积神经网络模型,同时考虑到了节点的结构信息和特征信息,提高内部威胁检测的准确率,降低误报率。
-
公开(公告)号:CN115455408B
公开(公告)日:2023-04-07
申请号:CN202211117994.6
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: G06F21/55 , G06V10/764 , G06V10/82 , G06N3/08 , G06N3/0464 , G06N3/048 , H04L9/40
Abstract: 本发明公开了一种网络空间推演与安全评估方法及装置,该方法通过将网络流处理为网络流图像,把传统网络流分类重新表述为图像分类;通过将具有注意力机制的卷积神经网络应用于此图像分类,增强了模型决策的视觉解释性;通过采用多任务分支网络模型同时预测网络流的二分类输出和多分类输出,利用学习到的特征,二分类可检测良性流或攻击流,多分类可预测具体的网络流入侵类别,提高了多分类任务的性能,解决分类不平衡、准确性较差问题。可见,通过结合注意力机制和多任务学习策略,在提升网络入侵检测性能的同时,实现了神经网络分类的透明性和解释性。
-
公开(公告)号:CN116047901A
公开(公告)日:2023-05-02
申请号:CN202211606055.8
申请日:2022-12-14
Applicant: 北京邮电大学
IPC: G05B13/04
Abstract: 本发明提出了一种基于自动门控循环单元的鲁棒时空轨迹建模方法,构建一个基于自编码器门控循环单元的通用协作学习框架,该框架由基于自动编码器(autoencoder,AE)的自表示网络(self‑representation network,SRN)用于鲁棒的轨迹特征学习和基于门控递归单元(gated recurrent unit,GRU)的分类网络组成,该网络与SRN共享信息用于协作学习和严格防御对抗性样本攻击。此外,由于GRU可以利用门控单元有效处理时序信息,并保留信息的长期依赖性,因此整体建模方法在防御白盒和黑盒攻击方面表现良好,尤其是在黑盒攻击中,其性能优于广泛使用的方法。此外,在Geolife和北京出租车轨迹数据集上的大量实验表明,所提出的方法可以提高模型在对抗性样本环境中的鲁棒性,而不会对干净的样本造成显著的性能损失。
-
公开(公告)号:CN115695027A
公开(公告)日:2023-02-03
申请号:CN202211379520.9
申请日:2022-11-04
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种原始网络流威胁检测方法与装置,该方法包括:获取原始网络流数据,利用原始网络流数据表征模型,对原始网络流数据进行处理,得到原始网络流数据的特征信息;划分原始网络流数据的特征信息,得到原始网络流数据的训练特征信息和原始网络流数据的测试特征信息;利用自动机器学习模型,对原始网络流数据的训练特征信息进行处理,得到优化原始网络流威胁检测模型;利用优化原始网络流威胁检测模型,对原始网络流数据的测试特征信息进行处理,得到原始网络流威胁检测结果。可见,本发明方法解决了由于复杂多变场景带来的方法适用性差、自动化程度低等难点问题,有效提高了网络空间作战场景下的威胁检测分析模型的自动构建水平。
-
-
-
-
-
-
-
-
-