-
公开(公告)号:CN119886269A
公开(公告)日:2025-04-25
申请号:CN202411673370.1
申请日:2024-11-21
Applicant: 北京航天计量测试技术研究所
Abstract: 一种人工智能主体深度强化学习不确定性估计方法,主要包括以下步骤:将基于深度强化学习的决策不确定性分解为偶然不确定性和认知不确定性;基于贝叶斯和非贝叶斯方法,计算每个不确定度的基本分量;合成获得标准不确定度以及扩展。该方法突破了传统深度强化学习不确定性估计的建模方法,以贝叶斯和非贝叶斯的方式评估不确定度,能够有效减少人工智能主体深度强化学习探索‑利用所需的时间。
-
公开(公告)号:CN119203796A
公开(公告)日:2024-12-27
申请号:CN202411710010.4
申请日:2024-11-27
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明提出一种基于仿真环境的智能设备环境适应性评估方法,采用构建虚拟仿真环境的手段,从天气配置、工况配置、干扰配置三个维度生成不同的场景数据,然后根据指标体系,计算智能设备的在不同的场景中完成任务的得分,从而完成对智能设备环境适应性的评估;所述天气配置用于提供多种天气条件下的虚拟环境,工况配置用于提供验证环境中的模拟路况,由多种天气条件下的虚拟环境和验证环境中的模拟路况构成的场景数据流为视频格式,视频的每一帧为图片,干扰配置用于模拟电磁干扰对图片形成的扰动。
-